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Abstract

Solving real-world combinatorial problems is involved many industry fields to minimise

operational cost or to maximise profit, or both. Along with continuous growth in computing

power, many asset management decision-making process that originally solved by hand and

now tend to be based on big data analysis. Larger scaled problem can be solved and more

detailed operation instructions can be delivered.

In this thesis, we investigate the models and algorithms to solve large scale Geographically

Disturbed asset Maintenance Problems (GDMP). Our study of the problem was motivated by

our business partner, Gaist solution Ltd., to optimise scheduling of maintenance actions for a

drainage system in urban area. The models and solution methods proposed in this thesis can

be applied to many similar issues arising in other industry fields.

The thesis contains three parts. We firstly built a risk driven model that integrates the

modelling elements from standard vehicle routing problems and the asset degradation infor-

mation. A hyperheuristic method embedded with customised low-level heuristics is employed

to solve our real-world drainage maintenance problem in Blackpool. Computational results

show that our hyperheuristic approach can, within reasonable CPU time, produce much higher

quality solutions than the scheduling strategy currently implemented by Blackpool council.

We then tempt to develop more efficient solution approaches to tackle our large scale GDMP.

We study various hyperheuristics and propose efficient local search strategies in part II. We

present computational results on standard periodical vehicle routing problem instances and

our GDMP instances. Based on manifold experimental evidences, we tempt to summarise the

principles of designing heuristic based solution approaches to solve combinatorial problems.

Last but not least, we investigate a related decision making problem from highway mainte-

nance, that is again of interest to our business partner, Gaist solution Ltd.. We aim to make

a strategical decision to choose a cost effective method of delivering the road inspection at

a national scale. Our analysis is based on the Chinese Postman Problem (CPP), where the

theoretical proof of modelling the real-world road inspection to a standard CPP is presented.

We also propose a novel graph reduction process to allow effective computation over very large

data sets.
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CHAPTER 1

Introduction

1.1 Motivation and research target

Public asset management has asserted its importance in many sectors, including water supply,

energy distribution, waste disposal, transportation system management and many others. In

an advanced society, it is important to keep the city’s fundamental infrastructures performing

their designed functions.

In transportation system management, the performance of the highway network has a

serious impact on the social, local economic development and environmental well being of

the community (Department for Transport (2013)). Due to the nature of ageing behaviour

of highway infrastructure and severe weather effects such as flooding, maintenance planning is

vital to keep the highway system in good condition. Poor road conditions may cause significant

losses to business (Asphalt Industry Alliance (2010)) and increase the chances of accidents and

disruption.

The highway system includes assets such as carriageways, foot-ways, trees, lighting system,

street furniture and drainage system. In recent years, local authorities have increased their

awareness of the importance of asset maintenance, which aims to deliver more efficient and

effective approaches to manage the highway infrastructures through continuous planning. Many

projects have been deployed in the UK to produce more “intelligent” services that achieve the

same outcome with lower cost or better outcomes. Example projects can be found in highway

asset management plans carried out in London (Transport For London (2007)) and Hampshire

county council (2016).

In cooperation with our business partner, Gaist Solutions Ltd., this research investigates a

maintenance scheduling task for a drainage system, and uses it as a case study to come up with

a general model for many Geographically Distributed asset Maintenance Problems (GDMP).

The aim is to provide a data supported decision making system that delivers robust asset

maintenance operation strategies in various scenarios.

In many cases in the UK, the drainage system maintenance is also tightly coupled to

environmental concerns such as water safety issues (e.g. biochemistry) and flooding risk control.

12



Chapter 1. Introduction 13

Our research with Gaist seeks a solution that includes a high level estimation and quantification

of the condition of a local authority’s drainage system, and a detailed despatching system that

prioritises maintenance actions with consideration of the suitability of the drainage system to

deal with present and future flood risk (Department for Transport (2012)).

1.2 Approaching the problem

In a typical city in the UK, a drainage system contains about 10,000 to over 100,000 gully pots

located across the city road network, as shown in Fig. 1.1. A maintenance team is responsible

for ensuring that the gully pot system performs its designed function – to help the surface

water to drain away from the roads quickly. To deliver an efficient and effective service to such

a system, there is an attempt to reduce the operation cost of visiting these assets, focusing

limited resources towards the greatest need. Many approaches could be taken from operational

research (OR) techniques; modelling of the vehicle routing problem (VRP) is a good place to

start. The VRP models are considered whenever multiple locations need to be visited within

one period or over multiple periods, given limited vehicle/human resource. During the past

decades, considerable research on vehicle routing and scheduling problems has been carried

out. In order to cope with real-world complexity, additional features and constraints could

be added to the standard VRP models to fit our real-world needs. In Chapter 2, we review

some basic VRP models, to show how the essential elements and features are captured from

real-world problems to mathematical models. Then a novel risk driven model is proposed in

Chapter 3.

Figure 1.1: Geographically distributed gully pots (a small area in Stockport, UK)

Solving a real-wrold OR problem consists of problem modelling and solving the modelled

problem. The outcome of a problem solver is a series of actions that could be taken in the real-

13



Chapter 1. Introduction 14

world scenarios. Problem modelling and solving are equally important to deliver a complete

successful solution. Developing well-performing algorithms for optimisation in OR has been

much studied. However, research still faces challenges in tackling many of the issues that arise

from real-world applications, such as large scale, uncertain information, limited computation

power and so on. More effort should be devoted to developing more efficient, robust, and easy

applicable algorithms. The second part of this thesis therefore investigates the development of

good solution methods.

1.3 Achievements and thesis overview

This thesis starts with an introduction to problem modelling and solving techniques for general

vehicle routing and scheduling problems in Chapter 2. The rest of the thesis can be divided

into three parts, summarised as follows.

Part I We start with a comprehensive analysis of the drainage system maintenance problem

in Chapter 3, and propose a risk-driven model that captures the critical features of the prob-

lem. We believe this model could also be directly used or slightly modified to solve similar

asset maintenance problems mentioned in section 1.1. We deliver a series of simulation based

analyses to discover the weakness of the current maintenance scheduling strategy in Chapter

4. In further research, Chapter 5 introduces a predictive scheduling strategy that automati-

cally adjust the maintenance actions according to environment and system status information

changes. To deal with large scale problems, we propose a systematic way of grouping asset

points, resulting in substantial reduction of problem size and no effects to the solution quality.

A detailed comparison of the long term impact between using different maintenance policies is

also presented.

Part II Having proposed a successful heuristic based solution method to produce the op-

timised schedule in Chapter 5, there remains ample room for improvement in method devel-

opment. In the later stages of my EngD journey, I moved towards designing heuristic based

search algorithms with machine learning. To deeply understand the principle of heuristic based

algorithm design for optimisation problems, we firstly review a set of efficient search technique

in Chapter 6. Then hyperheuristics and statistical learning based local search techniques are

presented in Chapter 7 and Chapter 8, respectively. In Chapter 7, we aim to discover the

essential components of developing a successful hyperheuristic algorithm and to analyse the

behaviours of hyperheuristics solving problems with different characteristics. Detailed perfor-

mance analysis of a range of hyperheuristics is presented. In Chapter 8, we propose a novel

dynamic multi-arm bandit neighbourhood search algorithm, which utilises some interesting

14
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properties of our drainage system maintenance problem to deliver an efficient search process.

This algorithm introduces various search techniques and successfully out-performs many exist-

ing algorithms studied in the earlier chapters.

Part III In the last part of this thesis, we introduce a related highway management issue,

the road inspection problem. It provides the latest key information on road and surrounding

asset condition, which helps decision making on some maintenance actions. In this part, we

do not build a detailed vehicle dispatching strategy for road inspection. Rather, we consider

high level decision making in OR, to determine a cost effective way of delivering the entire

road inspection project (Chapter 9). More specifically, we compare the total distance vehicles

should travel using two potential road inspection approaches, one-pass and bi-directional. In

order to deal with very large-scale road networks, we develop a graph reduction method that

allows the accurate analysis of a problem that was previously computationally infeasible. Our

graph reduction approach does not lose any necessary information to derive the exact solution.

With assists from Gaist of domain knowledge, we estimate an annual saving across all UK local

authorities of £4.32 million, if the more efficient one-pass road inspection strategy is applied.

Gaist is NOW using our approach in planning its national scale road inspection programme.

1.3.1 Related publications

The following papers are about the modelling and solving our drainage system maintenance

scheduling problem using existing meta-heuristic and hyperheuristic approaches.

1. Chen, Y., Cowling, P., and Remde, S. (2014). Dynamic Period Routing for a Complex

Real-World System : A Case Study in Storm Drain Maintenance. In Evolutionary Com-

putation in Combinatorial Optimisation, pages 109–120.

This paper introduces a very early version OF THE model for our drainage system

maintenance problem. In this work, some artificial resource data is used to deliver anal-

ysis, due to the lack of specific domain knowledge at the time. To start the research, I

solved the maintenance scheduling problem for our drainage system with half the number

of asset points, using variable neighbourhood search (Hansen et al. (2010)). In Part I of

this thesis, a slightly modified model with deeper analysis of resource data is presented.

Furthermore, techniques such as problem size reduction and an enhanced problem solver

allow us to deal with the full sized problem. Therefore, this thesis only covers the new

model and the analysis based on the new model.

2. Chen, Y., Polack, F., Cowling, P., Mourdjis, P., and Remde, S. (2016f). Risk Driven

Analysis of Maintenance for a Large-scale Drainage System. In Proceedings of 5th the

15



Chapter 1. Introduction 16

International Conference on Operations Research and Enterprise Systems, pages 296–303

(Won the best application paper award and included in Chapter 4.)

3. Chen, Y., Polack, F., Cowling, P., Mourdjis, P., and Remde, S. (2016e). Exploring Tech-

niques to Improve Large-Scale Drainage System Maintenance Scheduling Using a Risk

Driven Model. In Communications in Computer and Information Science (submitted)

(Included in Chapter 4.)

4. Chen, Y., Cowling, P., Polack, F., Remde, S., and Mourdjis, P. (2016b). Dynamic op-

timization of preventative and corrective maintenance schedules for a large scale urban

drainage system. European journal of operational research (Chapter 5.)

In the following papers, we focus on the study of local search, meta-heuristic and hy-

perheuristic. To understand the behaviour of these algorithms, we test them on benchmark

problem instances that are close related to our drainage system maintenance problem, and on

the problem itself.

1. Chen, Y., Mourdjis, P., Polack, F., Cowling, P., and Remde, S. (2016d). Evaluating Hy-

perheuristics and Local Search Operators for Periodic Routing Problems. In Evolutionary

Computation in Combinatorial Optimisation, pages 104–120 (Chapter 7.)

2. Chen, Y., Cowling, P., Polack, F., and Mourdjis, P. (2016a). A multi-arm bandit neigh-

bourhood search for routing and scheduling problems. Journal of Heuristics (submitted)

(Chapter 8.)

The content in Chapter 9 has also been described in following publications.

1. Chen, Y., Cowling, P., Remde, S., and Polack, F. (2016c). Efficient Large-scale Road

Inspection Routing. In Proceedings of 5th the International Conference on Operations

Research and Enterprise Systems, pages 304–312

2. Chen, Y., Polack, F., Cowling, P., and Remde, S. (2016g). A comparison of one-pass and

bi-directional approaches applied to large-scale road inspection. In Communications in

Computer and Information Science (submitted)
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CHAPTER 2

Real-world complex routing problem

Many real-world on-site service and maintenance problems are modelled as vehicle routing

problems with various objectives and complex constraints. The objective of this chapter is to

have an overview of how to model practical routing problems and discusses the solvers that

are commonly used. In order to do so, we firstly introduce the basic version of vehicle routing

problem (VRP). Then, four well-studied variations of VRP are introduced, as they share some

common features with our geographical distributed asset maintenance problem (Chapter 3).

Finally, we summarise the aspects that need to be considered when model real-world problems.

2.1 Vehicle Routing Problems

The vehicle routing problem (VRP) is often described as a problem of designing a set of

optimal delivery routes from a central depot or several depots to a number of geographically

distributed customers subject to constraints (Toth and Vigo (2002)). The most basic version

of VRP, capacitated VRP (CVRP), only considers the vehicle capacity constraints and one

central depot. Figure 2.1 presents an example of CVRP and one of its feasible solutionS.

Formally, let G = (V,A) be a complete graph, where V = {0, ...n} is the vertex set and

A is the arc set. There are i ∈ V/{0} customers to be served by a central depot 0, using

K independent vehicles of an identical capacity Q. Each arc (i, j) is associated with a cost

ci,j . If ∀ (i, j) ∈ A, ci,j = cj,i, this problem is a symmetric CVRP, and it is asymmetric

otherwise. Each customer i has a non-negative demand qi. To ensure feasibility, we assume

that ∀ i ∈ V, qi ≤ Q. The objective is to construct a set of least-cost routes that satisfies the

following constraints:

1. Each route starts and ends at the depot, represented as a sequence r = (0, 1, 2, ..., 0)

2. Each customer i is visited exactly once by exactly one vehicle;

3. The sum of demands of all customers visited by each vehicle does not exceed the vehicle

capacity.
∑

i∈r qi ≤ Q;

CVRP is one of the simplest, but still NP-hard (Toth and Vigo (2002)), variations of the
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Chapter 2. Real-world complex routing problem 18

(a) Geographically distributed customers
and their demand information di

(b) Example of a feasible solution of the
CVRP in (a)

Figure 2.1: An example of CVRP and its solution. In this problem, we have three vehicles to
serve ten customers. Each vehicle has capacity 20. The demand of each customer and their
locations are illustrated in sub-figure (a). A feasible solution is presented in sub-figure (b) and
its total travel distance is 40.

vehicle routing problems. It was firstly defined by Dantzing and Ramser (1959). In the last

half century, a large quantity of solution methods have been proposed, including exact and

heuristic methods. Exact methods can obtain optimal solutions. In literature, this type of

approach is normally used to solve small-sized instances. As the number of proposed exact

methods is large and out of the scope of this thesis, we only briefly discuss a few popular exact

algorithms.

2.1.1 Exact methods

The most studied exact methods are based on branch and bound (B&B), which is often used for

solving Integer Linear Programming (ILP). The key idea of B&B is to divide the search space

into sub-areas (branching). Then the evaluations of lower/upper bounds of these sub-areas are

calculated (bounding). If the evaluation value indicates that a sub-area does not contain the

optimal solution, the sub-area is pruned. A general approach to estimate a bound is to solve

a relaxed problem (such as removing or relaxing a constraint of the ILP). Depending on the

mechanism used to calculate the bounds, algorithms in this family, such as branch-and-cut (e.g.

Blasum (2002); Lysgaard et al. (2004)) and branch-and-price (e.g. Dell’Amico et al. (2006)),

have been successfully applied to vehicle routing problems.

Meanwhile, column generation is wildly used for solving larger linear programming problems

and has been the dominant exact method for a tightly constrained variation of VRP, VRP with

time windows (Martin Desrochers et al. (1992)). Fukasawa et al. (2006) combine branch-and-

cut and column generation to generate more effective bounds than each of those methods taken
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alone. This method is called branch-cut-and-price (Fukasawa et al. (2006)), and solves a number

of previously unsolvable CVRP benchmark instances. Subsequently, a number of improved

implementations of branch-cut-and-price algorithm have been developed (e.g.Ropke (2012);

Pecin et al. (2014)). According to the extensive experiments with new CVRP benchmark

(Uchoa et al. (2014)), the branch-cut-and-price (Pecin et al. (2014)) could solve the CVRP

instance with up to 275 customers.

The progress made in the last ten years on the exact CVRP algorithms is considerable.

More details of these methods and recent surveys on exact methods for the CVRP and its

variations can be found in (Baldacci et al. (2007); Cordeau et al. (2007); Baldacci et al. (2012);

Poggi and Uchoa (2014)). To our knowledge, the state-of-the-art exact methods can solve

CVRP instances with 200 customers in a consistent way (Uchoa et al. (2014)). Some larger

instance (Golden et al. (1998)), ranging from 240 to 360 customers, are also solved by Pecin

et al. (2014). However, when we face larger scale real-world routing problems (with over

thousands of customers and more complex constraints), even the best exact algorithm will face

huge challenges. In addition, the computational time needed for exact methods is significantly

longer than heuristic based algorithms (next section). In the experiment set by Uchoa et al.

(2014), the average CPU time used to solve CVRP instance with size from 150 to 300 customers

is about 1,000 seconds, whereas heuristic based approaches (e.g. iterative local search) used on

average about 5 seconds to find near-optimal solutions for the same instances. In this thesis,

we study a very large-scale geographical disturbed asset maintenance problem, and therefore

we focus on heuristic based approaches.

2.1.2 Heuristic methods

Heuristics play an important role in solving large-scale combinational optimisation problems.

These methods can be considered as a search process that iteratively constructs or modifies a

single or several candidate solutions. Different heuristics apply different rules to walk within the

solution space. Comparing to exact approaches using systematic search structure, heuristics

usually use local information from recently checked solutions. To intelligently and efficiently

move towards good solutions is the key to the success of a heuristic.

Along with the evolution of heuristic solvers for VRPs, we have witnessed the developing

trend from simple heuristics to hybridisation of several techniques initially developed inde-

pendently. This section aims to give a general view of using heuristic to solve VRPs. In the

following, we will introduce algorithms from constructive heuristics, improvement heuristics and

meta-heuristics. We will also briefly discuss the developing trend of heuristic approaches. In

Part II, we give a deeper discussion of more advanced techniques designed to improve heuristic

search efficiency.
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2.1.2.1 Constructive heuristics

Constructive heuristics iteratively build a complete (usually feasible) solution from scratch. The

earliest research can be traced back to 1964, a distance saving heuristic proposed by Clarke

and Wright (1964). Later on, more constructive heuristics for VRP, such as insertion heuristic

(e.g. Christofides (1976a)) and two-phase heuristic (e.g. Gillett and Miller (1974)) gradually

appeared from 1970s to 1990s. In the recent years, constructive heuristics are usually employed

to generate an initial solution for improvement heuristics and meta-heuristics. However, to

improve search diversity, many modern meta-heuristics multi-start the search from random

generated solutions. Here, we present two representative algorithms that are still widely applied

in modern solvers.

The Clarke and Wright algorithm The Clarke-Wright algorithm (Clarke and Wright

(1964)) is designed to solve CVRP that starts from constructing n routes r = (0, i, 0) for a

problem with n customers (i = 1, ..., n). There is no limitation on the number of vehicles used in

the solved problem. The heuristic process repeatedly merges two selected routes r1 = (0, ..., i, 0)

and r2 = (0, j, ..., 0) into a single route r′ = (0, ..., i, j, ..., 0), if the new generated route is

still feasible (i.e. load constraint satisfied). When two routes are merged, a distance saving

si,j = ci,0 +c0,j−ci,j is generated, as shown in Figure 2.2. At each iteration, the feasible merger

with the largest savings is performed. The algorithm stops when there are no more routes that

can be feasibly merged.

(a) Construct back and forth route for each
customer from deport

(b) Identify “saving” for each pair of cus-
tomers si,j = ci,0 + c0,j − ci,j ; take shortcuts
and merge them into a single tour, as long as
the resulting tour satisfy constraints

Figure 2.2: Clarke-Wright algorithm

The Clarke-Wright heuristic is a greedy algorithm that builds good routes at the beginning

and consequently gives less consideration to the routes generated later. To overcome this
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problem, Gaskell (1967) and Yellow (1970) modify the saving function to si,j = ci,0 + c0,j −

λci,j . The larger the λ, the less the impact from the relative location of the deport. Further

enhancement of this saving function has also been made by Paessens (1988) and by Altnel and

Öncan (2005), adding terms such as the difference in distances from customers to the depot

(i.e. |c0,i − cj,0|) and customer demand information to the function. Although Altnel and

Öncan (2005) performs the best on benchmark problems among these algorithms according

their experiments, when employed as an initial solution generator for meta-heuristics, there is

no obvious advantage. In Chapter 5, a slightly modified Clarke-Wright algorithm is applied to

generate parts of our initial solution for a gully-pot system maintenance scheduling problem.

Insertion heuristics Insertion heuristics (IHs) are also widely used today, especially for

solving VRP with tight constraints such as time window constraints for each customer (e.g.

Campbell and Savelsbergh (2004); Brysy and Gendreau (2005); Joubert and Claasen (2006);

Meidan et al. (2010); Hosny (2011)). Except when employed as an initial routes generator, IHs

are also often used as solution repair or reconstruct operators in meta-heuristics (e.g. Adaptive

Large Neighbourhood Search Ropke and Pisinger (2005)).

IHs build a feasible solution by repeatedly and greedily inserting an un-routed customer

into a partially constructed solution. Different IHs use different criteria to make the two key

decisions at each insertion-iteration: 1) which un-routed customer to insert? 2) where to insert

the customer in the partial solution?

One of the most used IHs is the sequential insertion heuristic (Mole and Jameson (1976)).

The sequential insertion heuristic expands one route at a time. At each insertion-iteration, the

algorithm selects the customer with the least cost that is measured by the increased distance

from the insertion of the customer to the route, and the distance between the customer and

the depot.

It is rather flexible to modify the customer selection and insertion criteria according to

problems. Therefore, IHs can easily be tailored to handle VRP with complex constraints.

Some example applications can be found in the fleet size and mix vehicle routing problem (Liu

and Shen (1999)) and VRP with back hauling (Salhi and Nagy (1999)).

2.1.2.2 Improvement heuristics

Classical improvement heuristics adopt a local search (neighbourhood search) concept that

perturbs a complete solution to improve its quality slightly at each iteration. A large number

of moves to modify the structure of the solution have been proposed since 1960s. Until now,

almost all successful VRP related problem solvers still use some of these basic moves, as they

are efficient ways to manipulate routes structures. In this section, we review a few basic but

commonly used moves for VRPs.
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Classical improvement heuristics for VRPs perform moves on either a single route or mul-

tiple routes at a time, classified as intra-route and inter-route moves, respectively. In the first

case, the λ-opt is one of the famous moves, proposed by Lin (1965). In each step, λ edges are

replaced by other λ edges to achieve a shorter tour. Figure 2.3 illustrates two possible changes

after applying a λ-opt (λ = 3) move. The λ-opt is based on the concept of λ-optimality, larger

values of λ are more likely to lead to an optimal final tour (Helsgaun (2000)). Due to the fact

that a larger value of λ results in a higher computational cost, the values λ = 2 and λ = 3 are

mostly used in literature.

Motivated by finding a good λ with consideration of both computational time and result

quality, Lin and Kernighan (1973) modify the value of λ dynamically throughout the search.

Or (1976) introduces an Or-opt move that attempts to improve a tour by replacing a chain

of consecutive vertices in a different position in the tour.

(a) Before (b) After(a) (c) After(b)

Figure 2.3: Two possible 3-opt moves

For VRPs with multiple constructed routes, the inclusion of inter-route moves is necessary

to build more solutions structures. A wide range of moves has been developed (e.g. Dror

and Levy (1986); Fahrion and Wrede (1990); Savelsbergh (1992)). Examples include moving

a chain of customers from their current route to another one (Relocate, shown in Figure 2.4),

exchanging positions of two chains of customers from two routes (Cross-exchange, shown in

Figure 2.5), and removing two edges from different routes and reconnecting the parts differently

into two new routes (2-opt*, shown in Figure 2.6). To specify the length of chains modified in

Relocate and Cross-exchange moves, we parametrise them by defining the longest chain changed

in the move, denoted as i-relocate and i-cross-exchange. A comprehensive survey about moves

for VRPs is provided by Groër et al. (2010).

A complete search of neighbour solutions that are generated by using one defined move on

the current solution is computational expensive, especially for large-scale routing problems. In

recent years, applications of VRPs tend to capture more complex features of real-world prob-
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(a) Before (b) After

Figure 2.4: An example of 2-relocate move. A chain contains customer (5,6) is relocated from
route r2 to r1

(a) Before (b) After

Figure 2.5: An example of 3-cross-exchange move.

lems, so customised moves are usually designed to satisfy some specific constraints. To tackle

these problems, a set of moves is designed as a toolbox. Comparing to classical improvement

heuristics, recent literature places more effort on designing sophisticated management methods

to apply the set of moves in an intelligent way. In Chapter 6, a further discussion is given for

several advanced neighbourhood search techniques and strategies of using different moves in

different stages of the search.

2.1.2.3 Meta-heuristics

Meta-heuristic is a core research domain in solvers for combinatorial optimisation problem. A

large number of meta-heuristic algorithms have been proposed for VRPs in the last twenty

years. With respect to the classical improvement heuristics, meta-heuristics aim to search the
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(a) Before (b) After

Figure 2.6: An example of 2-opt* move.

solution space more widely and thoroughly. Surveys of meta-heuristics for VRPs can be found

in Cordeau et al. (2005) and in Vidal et al. (2013). Existing meta-heuristics can be generally

classified as local search based methods and population based methods.

Local search based methods Local search based meta-heuristics have similarity to some

classical improvement heuristics, as a way of iteratively exploring the neighbourhoods of a

single incumbent solution to improve its quality. However, meta-heuristics introduce various

mechanism to avoid the search becoming stuck in local optima.

A simple, but widely used, strategy is to apply a large random modification to the current

solution. Iterated local search (ILS) (Lourenço et al. (2010)) is a good example of using this

technique. ILS applies successively an improvement phase, which ends up in a local optimum,

and a perturbation phase to escape from the local optimum. Even though using the word

“perturbation”, the strength of the perturbation move should not be so weak that it always

leads the search back to the same local optimum in the improvement phase. A similar strategy

is to restart the search from a new randomly constructed solution.

Another idea is to temporarily accept worse solutions. Typical examples include simulated

annealing (SA)(Kirkpatrick (1984)) and tabu search (TS) (Glover (1990a)).

At any time during SA, a worse solution is accepted with a probability governed by a

statistical process. Intuitively, SA favours a more random exploration of the solution space

by frequently accepting solution degradation at the beginning of a search process. Then, SA

gradually decreases the probability of accepting worse solutions to focus on moving towards

good solutions. Some early applications using SA to solve CVRP can be found in Robuste

et al. (1990); Alfa et al. (1991); Osman (1993). In recent literature, the SA strategy and its

variations is usually employed by more sophisticated meta-heuristics and hyper-heuristics as a
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solution acceptance criteria (e.g. Hemmelmayr et al. (2009)).

Tabu search (TS) (e.g. Glover (1990b); Toth and Vigo (2003); Cordeau and Maischberger

(2012)) introduces memory techniques to maintain information about the search trajectory. At

each search step, TS replaces the incumbent solution with the best neighbour solution which

has not been tabued, even if the neighbour solution is worse than the incumbent solution. To

avoid cycling search, TS uses a short-term memory to reject solutions that contain recently

examined tabu elements (tabued solutions). TS also allows exceptions to accept a tabued

solution if it satisfies some aspiration criteria, such as “the best found solution”. To enhance

the robustness of TS, a number of long-term memory strategies are proposed, either to diversify

the search by moving to a less explored area of the search space, or to intensify the search in

a promising region. In the applications of TS for VRPs (e.g. Taillard (1993); Xu and Kelly

(1996); Cordeau et al. (1997); Brandão and Mercer (1997); Alonso et al. (2007)), designing

of tabu elements is critical for the success of TS. Therefore, problem domain knowledge and

expert experience is very important here.

Evolving with the increasing complexity of combinatorial optimisation problems, a novel,

simple but powerful search schema is proposed by Hansen and Mladenović (2001), called Vari-

able neighbourhood search (VNS). VNS works with a set of neighbourhoods (N1, N2, ..., Nk),

which is often (but not necessarily) defined based on the use of move types (e.g. N2opt,

NRelocate). Starting from an incumbent solution x, standard VNS applies a perturbation (or

shaking) (x′ ← RandomPick(Ni(x))) and then an improvement local search (x′′ ← LS (Ni(x
′))),

at each search iteration. Shaking is essential for VNS schema as this mechanism leads to the

successive local searches starting at a slight different point in the solution space. VNS iteratively

examines solutions from these neighbourhoods in a systematic fashion. VNS is a parameter free

algorithm, which makes it relatively easy to implement for various problems. Many successful

VNS applications for VRPs can be found in (Fleszar et al. (2009); Hemmelmayr et al. (2009);

Pirkwieser and Raidl (2010)).

Population based methods Whereas local search based methods generate a single search

trace, population based methods manage a set of solutions all the time by generating several

new solutions out of combinations of existing ones.

One of the most famous members of this class is the genetic algorithm (GA), which can be

traced back to work from 1950s and was popularized by Holland (1962). GAs mimic the process

of natural selection and improve solution quality by applying elitist selection, recombination (or

crossover) and mutation techniques. Though GA has been successfully applied to many other

problem domains, traditional GA shows slow convergence when applied to VRPs (Vidal et al.

(2013)). To make GA work for VRPs, researches have added various enhancement mechanisms,

such as a local search phase (so called “education”) (e.g. Moscato (1989)). By hybridising with
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other search techniques, enhanced GA can achieved impressive success in solving VRPs (e.g.

Bell and McMullen (2004); Nagata et al. (2010); Vidal et al. (2012))

Ant Colony Optimization (ACO) is another nature inspired population-based method that

has been successfully applied to many optimization problems. When ants search for food, each

one marks the travelled paths with an amount of “pheromone” depending on the quality of

the food source. Applied to VRPs, each ant applies constructive heuristics with information

collected from the search history (i.e. “pheromone”). Comparing to GAs, ACO labels good

elements (e.g. edges of a good route) for constructing solutions, whereas GAs look for elite

complete solutions. Some successful VRP applications can be found in Matos and Oliveira

(2004); Yu and Yang (2011). As with many applications using GAs, ACO is often combined

with local search methods to enhance the solution quality.

2.1.2.4 Further discussion

In recent years, there is a growing interest in combining various search techniques to deliver

high quality solutions. In the section above, we have noted many examples of combining

population based methods with local search. The recombination of large parts of good solutions

(used in population based method) quickly finds high-quality starting points for a later local

search procedure. And local search intensively guides the search into local optima. This

complementary combination may explain the success of recent hypird-GAs (e.g. Nagata et al.

(2010); Vidal et al. (2012)).

Another trend in hybridisation combines meta-heuristics with exact solvers (e.g. Mixed

integer programming, constraint programming). Usually, exact solvers are used to solve a sub-

problem during the search, such as reconstructing promising elements of solutions into complete

solutions (e.g. Alvarenga et al. (2007)), or searching within a vary large neighbourhood (e.g.

Salari et al. (2010)). For solvers designed for more complex VRPs, exact methods are often

used to solve a sub-problem of the original problem, such as customer assignment problem for

periodic VRP (e.g. Gulczynski et al. (2011); Crainic et al. (2012)).

Meta-heuristics have experienced a big growth and achieved many successes in a variety

of VRP related problems. A large number of algorithms have been proposed. Each of them

presents its own specifications, resulting in different behaviours of walking within the solution

search space. Comprehensive discussion and detail description of these algorithms can be found

in Talbi (2009).

2.2 VRP with interesting features

In this section, we look at four well-studied variation of VRPs, each with additional interesting

features. Among these variations, the periodic vehicle routing problem has strong similarities
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to our geographical distributed asset maintenance problem (Chapter 3). The other three VRPs

also capture some important aspects of properties of our problem.

2.2.1 Periodic vehicle routing problems

The Periodic Vehicle Routing Problem (PVRP) (Christofides and Beasley (1984); Chao et al.

(1995); Cordeau et al. (1997); Gulczynski et al. (2011)) is widely used as a mathematical

model for real-world problems, such as inventory servicing, periodic maintenance, and on-

site service planning. Case studies can be found in milk collection (Claassen and Hendriks

(2007)), periodical grocery supply (Gaur and Fisher (2004)), waste collection (e.g. Teixeira

et al. (2004); Shih and Chang (2001)), elevator maintenance (Blakeley et al. (2003)), remote

healthcare services (An et al. (2012)) and many others. For more information, see the survey

by Campbell and Wilson (2014).

A PVRP comprises K vehicles which can be used to service the demands of a set of cus-

tomers over a period of days. Each customer i has a set of available visit patterns, denote as

Λi. For example, a customer might require two service visits per week, on either Monday and

Thursday or Tuesday and Friday, giving two available patterns. Each PVRP has constraints

that must be met: all vehicles start and end their journey at a single depot; no more than

K routes are built on each day; capacity restrictions of vehicles and travelling duration are

respected; a customer’s request should be serviced in one time slot by one vehicle; only one

service pattern λi ∈ Λi is chosen for each customer. The PVRP objective is to design a set of

daily routes, comprising feasible patterns for each customer, that minimizes the total travelling

cost and satisfies the PVRP constraints.

To solve PVRP-related problems, two main types of approach are commonly considered.

The first type of approach (e.g. Alegre et al. (2007)) assigns customers to days according to

their service pattern and then solves a vehicle routing problem (VRP) for each day. Use of

this solving process transforms a PVRP to a multiple depot VRP (MDVRP) (Pisinger and

Ropke (2007)). The second type of approach (e.g. Tang et al. (2007)) is to simplify a PVRP to

periodic travelling salesman problem (PTSP) by assigning customers to each vehicle/salesman.

Routes are then built up and scheduled to days. This second approach is usually used when

the service fleet is heterogeneous, or when strong ties exist between specific service personnel

and customers.

Baldacci et al. (2011) propose a successful exact algorithm for solving the PVRP. The fun-

damental idea uses bounding methods to generate a reduced problem from the original problem,

which ensures the the optimal solution of the reduced problem is also optimal for the origi-

nal problem. Then the reduced problem is solved by means of an integer linear programming

solver. To our knowledge, this paper presents the largest PVRP solved by an exact algorithm,
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at 153 customers, using about 14,500 seconds.

Meta-heuristics, which are capable of solving large scale real-world problems, are the most

common PVRP solvers in literature. Different meta-heuristics apply different search strategies,

resulting in variance in solution quality. Tested on benchmark instances with customer numbers

from 50 to about 400, meta-heuristic solvers are generally able to obtain solutions within 2%

gap to the lower bounds, using about hundreds of seconds. Chao et al. (1995) present a two-

stage record-to-record algorithm that constructs solutions using several local moves applied

one after another. Cordeau et al. (1997) were the first to use a tabu search heuristic for

PVRP. During the search, infeasible solutions are allowed and controlled using an adaptive

penalty function. Alegre et al. (2007) apply a scatter search framework (Laguna and Marti

(2012)) to solve PVRP. The algorithm solves a problem of assigning calendars to customers in

a periodic vehicle loading problem (Delgado et al. (2005)). Hemmelmayr et al. (2009) apply a

VNS embedded with customer reassignment and inter-route moves as “shaking” operators and

intra-route moves for local search process. Pirkwieser and Raidl (2010) add a coarsening and

refinement process to VNS, called multilevel VNS for PVRP.

More recently, hybrid meta-heuristics present very competitive results in terms of both solu-

tion quality and computational time. Gulczynski et al. (2011) describe an integer programming-

based heuristic (IPH): in this approach, the reassignment and daily routing processes are re-

peatedly applied until little or no improvement is found in the current iteration, when a restart

initial solution is generated. Gulczynski et al. (2011) report that IPH out-performs the algo-

rithms proposed by Chao et al. (1995); Cordeau et al. (1997); Alegre et al. (2007); Hemmelmayr

et al. (2009). Vidal et al. (2012) propose a hybrid genetic algorithm that combines local search

and sophisticated population management strategies to guide the search, an approach shown

to perform better than all the above algorithms. Cordeau and Maischberger (2012) combine

tabu search and iterated local search to give a competitive, broad exploration of the search

space. Crainic et al. (2012) propose a modular heuristic algorithm (MHA) that introduces a

reference set to guide exploration and exploitation during the search for solutions minimising

the number of vehicles used. In addition, the authors also present a self-learning mechanism

that leads the search to assign better customer visit patterns as the solution evolves.

2.2.2 Vehicle routing problems with profits

Another interesting additional feature to VRP is profit, which is the most concern in many real-

world applications. Some application examples include design of tourist trips (Vansteenwegen

and Oudheusden (2007)), collection of oil (Goncalves et al. (2005)), and operations of a steel

rolling mill (Balas (2007)). Recent reviews of VRP with profit can be found in Vansteenwegen

et al. (2011); Archetti et al. (2014).
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Based on the number of vehicles used, the standard model of VRP with profits can be

classified as an orienteering problem (OP) (Golden et al. (1987)) and a team OP (TOP) (Chao

et al. (1996b)). In the OP, there is a set of N locations and each with an associated profit pi.

The travelling time between any two locations i, j ∈ N is denoted as ti,j . There is one vehicle

available, with a maximum route duration Tmax. The vehicle should start and end its journey

at pre-defined locations. The goal is to find a route that visits some of the locations, in order

to maximise the total collected profit while satisfying the maximum duration constraint. The

OP has several other names in literature such as selective travelling salesman problem (Laporte

and Martello (1990)), and maximum collection problem (Kataoka and Morito (1988)). TOP

extends OP by allowing at most K vehicles to collect profit.

Compared to other VRP variations, there are two decisions made simultaneously in VRP

with profits: which locations to visit and in what order to visit them. Because a profit value

is associated with each location, it makes a location more or less attractive.

In early 1990s, several researchers propose exact methods such as branch-and-bound and

branch-and-cut to solve the OP (e.g. Laporte and Martello (1990); Gendreau et al. (1998a)).

Along with the developing trend of heuristic and meta-heuristics, methods including construc-

tive heuristics, multiple stage improvement heuristics (e.g. Chao et al. (1996a)), tabu search

(e.g. Gendreau et al. (1998b)) and ant colony optimisation approach (ACO) (e.g. Liang et al.

(2002)) are gradually applied to the OP.

In recent years, literature shows more interest in solving TOP and its variants such as ad-

ditional time window constraints of visiting each location (e.g. Vansteenwegen et al. (2009b)).

Meta-heuristics are the dominant solvers. A few example can be found in tabu search (e.g.

Archetti et al. (2007)), VNS (e.g. Archetti et al. (2007)), and guided local search (e.g. Vansteen-

wegen et al. (2009a)).

2.2.3 Heterogeneous vehicle routing problems

The standard orienteering problem above only considers vehicle duration constraints. In many

applications, the vehicle load constraint is equally important. Depending on the various types

of vehicles available in a fleet (not limited by the duration and load information), a problem

can be classified as a heterogeneous or a homogeneous VRP. Whereas many standard VRPs

study homogeneous problems, real-world problems often consider a heterogeneous VRP.

In the literature of heterogeneous VRP, two major classes of models are defined: hetero-

geneous fleet VRP (HFVRP) and fleet size and mix VRP (FSMVRP). HFVRP considers a

problem when the fleet composition is given (e.g. Tarantilis et al. (2004)), whilst FSMVRP

assumes infinite vehicles of each type (e.g. Choi and Tcha (2007)). HFVRP aims to optimise

the operational cost given existing vehicle resources. In comparison, FSMVRP emphasises a
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strategic investment decision on an optimal fleet composition to deliver efficient service.

Generally, heterogeneous VRP manages a heterogeneous fleet composed by M types of

vehicles. For each type m ∈ M , there is km number of vehicles available (in FSMVRP, km =

+∞,∀m ∈ M), each having a capacity Qm. A set of geographical distributed N customers

is given and each has a demand of qi from the depot. In addition, the travelling cost may

depend on the type of vehicle, denoted as cmi,j . In some variations of the heterogeneous VRP,

an additional fixed cost Fm is associated with each type of vehicle, which models rental or

maintenance costs. The goal is to find a set of routes that services all customers with minimum

operational cost, subjected to the capacity constraint and vehicle number constraint.

A more closely related variation to our gully-pot system maintenance scheduling problem

(Chapter 3) is the site dependent VRP (SDVRP) (Chao and Liou (2005)). In SDVRP, a

limited heterogeneous fleet is given and there is no fixed cost considered Fm = 0,∀m ∈ M .

SDVRP uses vehicle-independent travelling cost, where cm1
i,j = cm2

i,j ,∀m1,m2 ∈ M . However,

each customer is restricted to the vehicle types that may visit it. For example, a customer can

be visited by m1 and m2 types of vehicle (represented as Ai = {m1,m2}) and another customer

can be visited by m1 and m3, etc.. Here, we can see a strong similarity between the SDVRP

and the PVRP, in which an assignment problem and a routing problem are involved. Cordeau

and Laporte (2001) show that the SDVRP can be converted into a special case of PVRP and

they use the same solver designed for PVRP in a previous paper (Cordeau et al. (1997)) to

tackle SDVRP.

Baldacci et al. (2008) provide a comprehensive survey of solutions to heterogeneous VRP.

Reviewing the proposed successful algorithms for heterogeneous VRP, many of them are adapted

from solvers developed for other VRP variants, such as record-to-record heuristic (Li et al.

(2007)), tabu search (e.g. Brandão (2011)) and hybrid ILS with VND (e.g. Penna et al.

(2013)). Li et al. (2007) adapt a record-to-record heuristic (RTR) for the VRP to handle the

HFVRP. RTR can be considered as a deterministic variant of simulated annealing. Two clearly

defined search stages, uphill and downhill (improvement) stages, are introduced by RTR. In

the uphill stage, a neighbour solution is accepted as long as it is not worse than the current

(or best) solution by x%. Brandão (2011) introduce a tabu search framework embedded with

a number of customised design for HFVRP, including design of moves, strategy of managing

the moves, attributes in tabu list and aspiration criteria, etc.. Penna et al. (2013) propose

an iterated local search (ILS) meta-heuristic which uses a VND procedure, with a random

neighbourhood ordering, in the local search stage.
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2.2.4 Dynamic Vehicle Routing Problems

Along with the fast development of information technology, there is an increasing interest in

dynamic scheduling and routing problems. The most common scenarios of dynamism emerge

from taxi business (e.g. Caramia et al. (2002)), city logistics (e.g. Barceló et al. (2007))

and vehicle routing in supply chain management (e.g. Giaglis et al. (2004)). In recent years,

applications in maintenance scheduling (e.g. Tagmouti et al. (2011)), have also started to be

aware of the dynamic features of real-world situations. Depending on the problem scenario, the

concept of dynamism has been introduced from various perspectives, such as unknown time of

demand arrivals, fluctuating travel time due to traffic, uncertain service time at each site and

changing service priority. A recent survey can be found in Pillac et al. (2013).

By means of dynamic planning, we can change or update the plan during the execution of

the plan. Figure 2.7 illustrates a simple example of a dynamic vehicle routing problem with

only one vehicle to schedule.

Figure 2.7: Dynamic planning for future tasks of a single vehicle.

To solve dynamic VRPs, an intuitive approach is to periodically solve a static problem

according to the current state information. The replanning time can be whenever the available

information changes (e.g. a task complete, new customer appeared), or at fixed time intervals.

Another concept often involved in real-world dynamic VRPs is stochastic input information,

categorised as stochastic VRP (Gendreau et al. (1996)). In addition to the current known

information, stochastic VRP introduces additional uncertain information to the problem. In

real-world applications, the uncertain information could be obtained from estimation using

historical domain knowledge. The motivation is to enhance the robustness of a solution in

an uncertain changing environment. A large body of literature has reviewed dynamic and

stochastic VRP. Here, we suggest a review paper (Larsen et al. (2008)) and a book (Zeimpekis

et al. (2007)) for detailed discussion of problems in this area.

Looking at the dynamic idea applied in situations closer to our geographical distributed
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asset maintenance problem (Chapter 3), Angelelli et al. (2007) introduce a dynamic multi-

period routing problem (DMPRP) where two time-slots scenario is analysed. At the beginning

of the first time-slot, a set of orders arrives that have to be serviced either immediately or

in the next time-slot. Thus, the decision should be made as to whether the requests should

be postponed. The objective of the problem is still to minimize the total distance travelled

during the entire planning horizon. The authors propose a SMART (p) algorithm that decides

whether to postpone the customers depending on a ratio of incremental distance after adding

the customers. A theoretical proof is given that p = 2 is an optimal algorithm for Euclidean

distance instances. As an extension of the previous work, Angelelli et al. (2009) further classifies

orders into on-line and off-line requests and replanning during the journey (diversion) is allowed.

Here, instead of simple rule based decision making, a heuristic based method, VNS, is used to

produce good solutions. Wen et al. (2010) solve a real-world variation of DMPRP; whether to

serve an order immediately is a vital decision in this case study. Their tested instances have

10-day to 15-day planning horizon and 80 emerging orders on average every day. A PVRP

variation is solved every day in the horizon by applying a three-phase rolling horizon heuristic,

which includes a customer selection stage, a route optimisation stage with respect to the overall

objective function and a post-optimization stage for daily route distance minimisation.

2.3 Real-world Vehicle Routing Problems

Vehicle routing problems have attracted a lot of attention in the field of transport related

operational research. These problems are usually concerned with real-world applications where

multiple locations need to be visited. For example, a supermarket needs to plan the routes

for delivering goods to each customer; garbage collocation service predicts the quantity of

garbage from each site and plans the routes for collecting the garbage. Comparing to the

CVRP, additional features are captured in real-world applications using various constraints

and sophisticated objective functions, commonly known as rich VRP (Caceres-Cruz et al.

(2015)). In Table 2.1, we summarise six aspects that are usually considered when modelling a

real-world vehicle routing problem.

In addition, multiple stakeholders are usually involved in real-world problem scenarios. To

understand the relation between all of their concerned problems is important. An example

scenario can be as follows. Department D1 has assigned budget B1 to survey road surface

condition every year and department D2 has assigned budget B2 to maintain the gully pot

system in the urban area every year. Is it possible and beneficial to combine these two problems?

This topic is out of the scope of this thesis and more close to project management. However,

this is the type of problem that researchers need to be aware of when considering solvers for

real-world situations.
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Table 2.1: Feature considerations when model a real-world routing problem

Concern aspect Description

Customer
Many features can be extracted from real-life, such as service type
(e.g. pick up, deliver), service time, vehicle type requirement and
cost/profit of visiting.

Vehicle/Technician

Homogeneous or heterogeneous fleet defined by features like ca-
pacity, service duration, type. In this context, a type of vehi-
cle/technician can only provide a certain type of service, such as
fixing an air conditioner.

Depot

Depot defines the starting and ending location of planned routes.
Multiple depots, and related features such as depot capacity can
be introduced. In open VRP, vehicles are not required to return
to the depot.

Planning horizon The objective is to optimise the operation over multiple periods.

Dynamic

During the planning process, not all information related to the
problem is revealed at the beginning. For example, the customers’
requirements appear over time when the vehicles have already been
sent to carry out tasks.

Objective

In a real-world scenario, the objective function can be very tricky
to design. There may be multiple objectives to optimise. In dif-
ferent situations, these objectives may or may not have direct im-
pact to each other. Common solutions include combining multiple
objectives into a single function, or solving each objective in a
different stage of an optimisation process.

A number of survey papers attempt to classify the variants of VRPs (e.g Vidal et al.

(2013); Lahyani et al. (2015)). Here, we are more interested in the developing trend of rich

VRP and its applications in real-world scenario. We refer to the diagram proposed by Caceres-

Cruz et al. (2015) (Fig. 2.8). At the bottom of the diagram, many classical VRP models

and benchmark instances have been proposed. These models capture most of the essential

features of VRPs,but the benchmark instances have small size. These classical models have

clear mathematical definitions that allow theoretical analysis and comparison between various

algorithms proposed by different authors.

To cope with more sophisticated scenarios emerging from real-world requirements (e.g. Li

et al. (2010)), we sometimes need to consider multiple related problems for the model, such

as container packing, inventory management, and the like. Moving to the third level of VRPs

(Fig. 2.8), in order to understand the solution quality (or more correctly the solution impact

for real-world situations), problem solvers and simulation based analysis are usually provided

in literature (e.g. Faccio et al. (2011)). The solvers that are needed to deploy a VRP support

system in real-world scenarios (top level, Fig.2.8), requires sophisticated software engineering as

well as advanced search techniques. These solvers consider distributed computing, robustness

of the system (e.g. more complex environment than simulation, large-scale demands), safety

concerns (e.g. route-planning in self-driving vehicles), and so on.
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Figure 2.8: From laboratory VRPs to real-world applications (modified from Caceres-Cruz
et al. (2015)).

In this thesis, we focus our research on the third level, using modelling and simulation

based approach to evaluate the impact of our heuristic solvers and to compare with the manual

scheduling strategy that are currently widely used in the corresponding field.

2.3.1 Useful techniques for solving real-world problems

After analysing and modelling the given problems, we need to propose some realistic solutions

that can deal with challenges such as large-scale, uncertainty, real-time, etc.. According to our

experience of solving drainage system maintenance scheduling and a road inspection problem

in this thesis, we summarise a few useful techniques for handling real-world problems:

1. Problem size reduction. Existing methods (including both exact approach and heuristics)

are usually able to handle VRPs with less than 1,000 nodes in CPU minutes. However,

most of the real-world problems contain thousands of geographically distributed nodes.

Depending on the CPU budget, efficient solvers are normally preferred. Pre-processing

to decrease the problem size is usually more effective than optimising algorithm. This

is mainly because we are solving NP-hard problems (Toth and Vigo (2002)). Common

problem size reduction techniques include node clustering (e.g. two-phase heuristics),

node aggregating (e.g. Wen et al. (2009)), small rolling horizon (e.g. Chen et al. (2014)),

and so on.

2. Incrementally solving a problem with updated information. In a dynamic environment,
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at any instant time t, we can solve a small problem that starts the search from historically

built good solutions or good elements of solutions.

3. Good design of solution representation and neighbourhood structure. Heuristic based

approaches for VRPs normally require the design of local moves. It is important that a

sequence of moves can reach any feasible solution in the solution space. Also, techniques

like neighbourhood pruning (e.g. Toth and Vigo (2003)), statistically examining promis-

ing neighbours (Chapter 8) usually significantly helps to enhance the search efficiency for

large problems.

4. Estimation. In many real-world scenario, not all information (e.g. customer demands)

is known when solving the problem. To better solve dynamic and uncertain real-world

problems, solvers often integrate estimation techniques with heuristics for scheduling and

routing (e.g. Nuortio et al. (2006)).

2.4 Summary

This chapter has reviewed problems that can be commonly modelled as a vehicle routing

problem and its variations. We start with the very basic capacitated VRP to get an overview

of the elements (e.g. vertices, arc, load information) included in these problems. Then we

reviewed various interesting elements added to CVRP (e.g. multi-period, heterogeneous fleet),

that capture different scenarios from real-world experiences. Exact approaches like branch-

and-cut algorithm, heuristic based approaches like local search and genetic algorithm have

been proposed to solve VRP-like problems.

With the evolving of solution approaches, researches attempt to model more and more

sophisticated problem that arise from a diversified real-world situation. To cope with new

challenges, hybrid algorithms that integrate assorted techniques originally developed indepen-

dently, now become to be the trend of solution approach design.

Our research in this thesis faces a significant larger problem (Chapter 3) compared to

similar problems studied in literature. Traditional ways of solving such a problem may be

very computational expensive that do not converge within reasonable CPU time. However,

reviewing individual techniques employed in various solvers, such as elite solution (or element)

management, rolling planning horizon and many others, helps us to build efficient solvers for

our needs.
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This research looks at large scale geographically distributed asset maintenance problems. In

collaboration with our industrial partner Gaist Solutions Ltd., we focus on a gully pot system

maintenance problem and use it as a case study to build a general geographic distributed

asset maintenance problem model. This model is able to capture two main sub-issues that

exist in this type of problem, namely the routing problem and the despatching problem with

consideration of asset condition deterioration. Power grid maintenance is another good example

of real-world applications in this area.
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CHAPTER 3

A gully pot system maintenance scheduling problem

In this chapter, we focus on the modelling of a real-world gully pot system maintenance

problem. While the content is included in our papers (Chen et al. (2016b,f,e)), a more complete

presentation of the general geographically distributed asset maintenance model is given here,

and further discussion is delivered.

3.1 Background Information

Gully pot compose an important part of the storm drain system that prevents solids and sed-

iment from flushing into sewers, where they cause blockages in the underground surface water

collection infrastructure (Butler et al. (1995)). Regular cleaning is required for gully pots to

function effectively (Karlsson and Viklander (2008); Scott (2012)): typical strategies are to

clean all gully pots once or twice a year. If gully pots are not cleaned regularly, partial or com-

plete blockages and accelerated deterioration of the gully pots increases the likelihood of surface

water flooding. In extreme situations such as intensive rainfall, a clogged drainage system may

cause serious property loss (i.e. BBC (2011, 2012); Shieldsgazette (2012); Leylandguardian

(2015); Yorkpress (2016)).

In the UK, gully pot maintenance is undertaken by local councils, each using its own

strategy. Our research focuses on gully pot system maintenance problem from Blackpool, UK,

as a case study, with data from the local council and from consultants, Gaist Solutions Ltd.

Blackpool’s gully pot maintenance system records 28,149 gullies in an area of about 36.1 km2.

Analysis of real-world gully pot maintenance records shows that human and environmental

factors play a critical role: leaf-fall causes many gully pot blockages; strong winds can blow

sand or dirt into gully pots causing partial blockages; reporting of gully pot issues by local

residents varies across the seasons; and parked vehicles affect the cleaning plan.

Blackpool local council has two gully cleaning vehicles but only one cleaning team. On any

day, the team either takes out the normal cleaning machine, which uses hydrodynamic pressure

and a vacuum to loosen and remove solids and liquids from a gully pot (Karlsson and Viklander

(2008)), or uses a specialist machine, equipped for fixing broken gully pots. Currently, each day

there is a schedule of gully pots to visit, starting and ending at the depot. Either maintenance

38



Chapter 3. A gully pot system maintenance scheduling problem 39

vehicle departs the depot at 09:00 and returns no later than 17:00. During servicing, some

gully pots are inaccessible, usually due to parked vehicles. If the team encounters a broken

gully pot during normal cleaning, it is recorded and subsequently added to the schedule of the

specialised vehicle. Scheduling also needs to take account of residents’ reports of problematic

gully pots: depending on the local risk, these emerging events should be scheduled 5 to 20 days

from when they are recorded.

Currently, the maintenance schedule is produced manually by experienced managers. The

control level is down to wards of the city and each day’s maintenance route is planned by

experienced drivers. Our research aims to improve this situation and produce self-adaptive

scheduling and routing supported by data analysis.

3.1.1 Preventative and Corrective maintenance approaches

Maintenance is a series of actions that aims to retain an object in, or restore it to, the state

where it performs its required function (Besnard et al. (2010)). As shown in Fig.3.1, main-

tenance is generally categorised into corrective and preventative maintenance (Duffuaa et al.

(2001); Besnard et al. (2010); Ahmad and Kamaruddin (2012)).

Figure 3.1: Classification of maintenance strategies (Besnard et al. (2010))

Corrective maintenance (CM) usually happens after failures occur. It includes actions such

as repair and replacement. Tsang (1995) notes that the consequence of doing only corrective

maintenance is a high risk of machine downtime and property loss. In our gully pot system

maintenance case study, we define failure as broken or blocked gullies and residents calling

events. These failures cause a dynamic scheduling and routing situation, where unscheduled

maintenance actions should be carried out. This also leads to high maintenance costs.

Preventative maintenance (PM) is an alternative strategy that aims to reduce these risks.

In industry, preventative maintenance typically takes place at regular time intervals, based on

experience. Operational research on PM introduces decision making, based on data analysis,

with techniques such as time-based (TBM) (e.g. Scarf and Cavalcante (2010); Wu et al. (2010))

and condition-based maintenance (CBM) (e.g. Carnero Moya (2004); Campos (2009)). TBM

can be applied when the failure rate is predictable, whilst CBM is employed where conditions

are continuously monitored by sensor or any appropriate indicators. There is little research
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combining PM and CM strategies: Kenne and Nkeungoue (2008) introduce a PM/CM rate

control strategy, obtaining a near-optimal maintenance policy for a manufacturing system.

In comparison to other maintenance literature, the gully pot system maintenance problem

involves geographically distributed points and a strictly-limited service resource. Instead of

finding an optimal maintenance policy for each individual object, the focus of this research

is to produce an optimal maintenance schedule covering all objects within time and resource

constraints.

3.1.2 Case studies of geographical distributed maintenance problem

In this section, we review various models used in real-world maintenance and on-site service

problem scenarios. The focus here is the applications of the models; the definition of these

models and their common solution methods are discussed in Section 2.2.

3.1.2.1 Periodical vehicle routing problem (PVRP)

Many geographically distributed maintenance and on-site service problems are modelled as rich

vehicle routing problems. The most widely used model is the PVRP in which a planning period

of several days is considered and each point in the problem must be visited at specified days.

Blakeley et al. (2003) use a multiple-objective PVRP to model a real-world elevator and

escalator maintenance problem, which includes periodically checking customers’ equipment and

reacting to call-outs. Travelling time, workload balancing, visiting time window violation and

overworking time are considered in a weighted linear objective function. Jang et al. (2006)

solve a problem of routing lottery sales representatives to visit lottery retail locations using a

similar model. Again, a weighted objective function composed of travelling distance and routes

balance is applied. The route duration and visiting time window limitations are considered

as soft constraints. During the optimisation process, while minimising the objective function,

the algorithm also simultaneously decreases the constraints violations. Alegre et al. (2007)

analyse a real-world periodic pick-up of raw materials problem and model it as PVRP. The

notable characteristic of this research is the very long planning horizon (90 days) compared to

other literature. Related work has also been analysed in remote healthcare services. An et al.

(2012) consider the home healthcare problem, which needs to provide periodical services to

various patients. Maya et al. (2012) help an education institution to provide periodical services

for disabled children. This problem is considered as a multiple depot PVRP as each teaching

assistant starts and ends their journey from home. Garćıa et al. (2013) consider a perishable

products supply problem for a bakery company. Weekly delivery routes from the depot to

distributors are generated. This problem introduces a certain flexibility in the delivery date.

The authors introduce a bi-objective model that minimizes the total travelled distance and the
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total stock over the planning horizon simultaneously.

3.1.2.2 Profit based objectives

Another element introduced to many maintenance or on-site service scheduling models is profit.

In these models, the visiting frequency of each customer/site is not pre-specified. Instead, each

customer/site is associated with a profit value and the number of visits within the planning

period becomes a decision variable. These models have similarity to PVRP, in that a schedule

is produced for a given period. A well studied standard model with the profit maximising

objective is the team orienteering problem (TOP) (Section 2.2.2), which requires the determi-

nation of a set of routes maximising the total reward of nodes visited with a duration limit. In

many real-world problem modelling, the elements of TOP and PVRP is combined. Baptista

et al. (2002) model a paper recycling problem as a PVRP with profit, which maximise the total

profit from selling the collected paper given limited operational resource (e.g. vehicle, working

hours). Their objective function is composed by a linear cost function including income and

outcome aspects of the operation for a given period. Goncalves et al. (2005) consider a similar

model for an oil collection problem and they try to maximises the amount of oil collected by all

vehicles while some specific constraints for the problem are satisfied (i.e. a well site can only be

revisited after its recovery day interval). Tang et al. (2007) model a geographically distributed

equipment maintenance scheduling problem as a Multiple Tour Maximum Collection Problem

with Time Dependent rewards (MTMCPTD). The rewards are decided based on manufacturer

maintenance interval suggestions. The objective is not to minimise the travelling cost but to

maximise the reward from completing tasks (i.e fixing or checking a machine). In this case, not

all equipments are visited within the planning horizon. A similar model has also been applied

for a inspector scheduling issue for one of the largest retailers in the world (Zhang et al. (2013)).

3.1.2.3 Heterogeneous fleet

Some on-site service scheduling problems also involve human resource and vehicle resource

management. Cappanera et al. (2011) propose a skill VRP that originates from the despatching

of technicians to customers in after-sales service management. The service team has a set of

technicians and each with a skill level represented by an integer value. The requirement from

a customer i should be serviced by any technician having a skill level at least si. The skill

VRP can be considered as a special case of site-dependent VRP (Section 2.2.3). The difference

exists in the ordering relation among the technicians, whereas there is no hierarchy among

the vehicles in site-dependent VRP. Amorim et al. (2014) study a rich VRP arising from a

Portuguese food distribution company. A fleet is composed of refrigerated and normal trucks

of various sizes. For each customer, there is a set of vehicles that is able to serve this customer.
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To capture all the features that exist in this real-world problem, a heterogeneous fleet VRP

with site-dependent and time window constraints is introduced.

3.1.2.4 Dynamic problems

In most of the case studies considered above, all of the customers or assets that needs to be

serviced are known in advance. In contrast, the service requests in dynamic scenarios emerge

continuously over time. Wen et al. (2010) consider a large distributor operating in Sweden and

model it as a dynamic multi-period routing problem. Customer orders and their feasible service

periods are dynamically revealed over time. The objective function is a linear combination

of total travel costs, customer waiting, and the balance of daily workload over the planning

horizon. The dynamic aspect is also studied in a winter road gritting problem by Tagmouti

et al. (2011). The problem is dynamic as the best service time for each segment is affected by

a moving storm and a decision should be remade as the environment changes. Every time that

the update of weather forecasting information is received, an updated solution is generated by

solving a static problem with the newest state information.

3.2 A risk driven model

Having reviewed many related case studies of real-world maintenance and on-site service prob-

lems, this section proposes a risk driven model that is based on the problem characteristic and

requirement analysis.

3.2.1 Problem analysis

For our gully pot system maintenance problem and many other asset maintenance problems,

the high level aim is usually to ensure our system performs its required function. This form

of service differs from many on-site service delivery problems (Section 3.1.2.1) in terms of its

unclear or very variable visiting pattern. How to decide when to visit which asset becomes a

key question, unlike PVRP where this is known in advance. Why is it necessary to visit some

of the assets first? What is the measurement of maintenance schedule quality? It seems that

a high level dispatching decision should be made. The traditional vehicle routing models with

fixed value of each vertex (e.g. TOP) or without any vertex evaluation (e.g. VRP) are not

able to give a satisfactory answer. Meanwhile, routing is a crucial aspect when we face a large

set of geographical distributed asset points. Routing aims to optimise resource utilisation.

In terms of heterogeneous fleet management, the gully maintenance problem considered in

Blackpool has a fixed bound between a gully pot state and the required service, so there is no

decision to be made on which vehicle to use.

42



Chapter 3. A gully pot system maintenance scheduling problem 43

Another interesting property of our problem is that it is dynamic in the sense that un-

expected failures are revealed incrementally over time. In this scenario, rescheduling may be

required. At any decision point, planning must determine which assets should be visited soon

and in which sequence the vehicles should visit them.

In this section, we propose a risk driven model that combines the risk driven asset manage-

ment concept with dynamic periodical routing model.

3.2.2 General model of the risk driven asset maintenance scheduling

Our risk driven model captures the common features of many geographically distributed main-

tenance problems. A geographically-distributed system is considered as a directed complete

graph G = (V ;E), where V is the set containing N assets and one depot, and E is the set of

edges (i, j), where i, j ∈ V . These assets need maintenance in a continues time or over a very

long period D (e.g. 5 years). Each asset i is associated with a risk impact ri, which measures

the value of this asset to its stakeholders. There is a failure probability of each asset that

changes over time, and can be obtained by a function Pi(d), which measures the probability

that asset i is in a failure state on day d ∈ D. We have a maintenance team with K vehicles

available and each vehicle k ∈ K can only deliver a certain type l of maintenance action. We

denote the vehicle attribute as kl and use Kl to represent the set of vehicles of type l. Other

input parameters include the following:

• Tmax: the maximum travelling time allowed for each route;

• cij : distance, in terms of travelling time, from asset i to j;

• K l
max: the total number of type l vehicles.

• Hmax: the total number routes allowed each day (usually due to human resource limita-

tion).

• tl: service time of completing type l maintenance actions.

• il: the state value of asset i that can only be retained by type l vehicles.

Here, we present the formulation for the planning problem of the next W days, where

|W | � |D|. A judicious subset of assets is scheduled in the next short maintenance period W

(e.g. a week or 2 weeks) and the total risk caused by assets failure in this period is minimised:

∑
d∈W

N∑
i=1

riPi(d) (3.1)

A binary variable that describes scheduling decision is shown below:
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xd
ik =

 1, if asset i is visited by vehicle k on day d

0, otherwise
.

To calculate the objective function 3.1, we define our Pi(d) as follows. Fi(d, di) represents

an approach to estimate the lifetime of asset i given its last service date information di. Section

3.3.2 describes a Weibull distribution for gully pot lifetime estimation applied in this study.

Alternatives are also discussed.

Pi(d) =

 0, if xdik = 1 and il = kl

Fi(d, di), otherwise
.

Our secondary objective is to minimise the total distance travelled during the planning

period: ∑
d∈W

∑
(i,j)∈E

∑
k∈K

cijy
d
ijk (3.2)

yd
ijk =

 1, if the scheduled route visit edge (i, j) by vehicle k on day d

0, otherwise
.

Subject to:
N∑
i=1

xdiktl +
∑
(i,j)

cijy
d
ijk ≤ Tmax; ∀d ∈W, ∀k (3.3)

xdik = 1⇔ ∃j, j′ : ydijk = ydj′ik = 1; ∀d ∈W, ∀k (3.4)

xd0k = 1; ∀d ∈W, ∀k ∈ K (3.5)

yd0jk = 1; ∀d ∈W, ∀k ∈ K (3.6)

ydi0k = 1; ∀d ∈W, ∀k ∈ K (3.7)

∑
k∈K

N∑
j=1

yd0jk ≤ Hmax; ∀d ∈W (3.8)

∑
k∈Kl

N∑
j=1

yd0jk ≤ K l
max; ∀d ∈W, ∀l (3.9)

Constraint 3.3 guarantees that the time spent on each daily route is less than the limit Tmax.

Constraints 3.4, 3.5, 3.6 and 3.7 ensure every route is feasible, and starts from and returns to

the depot. Constraint 3.8 makes sure that the number of vehicles used on each day does not
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exceed Hmax. Constraint 3.9 limits the usage of vehicle for each type. Please note that we do

not include vehicle capacity constraint in this model. For most of the maintenance situations,

the vehicle capacity is sufficient for a normal daily work. In our gully system maintenance case,

the waste disposal process after daily work is beyond our scheduling programme and a fully

prepared vehicle is despatched every day.

3.3 An application to gully pot system maintenance

To apply the risk model to our gully pot system maintenance problem, this section introduces

the detailed analysis and calculation for the two components of the objective function 3.1, risk

impact of each asset ri and the estimated failure probability on future days Pi(d).

3.3.1 Estimating the risk impact per gully pot

A potential hazard (i.e. surface water flooding) could be exacerbated by both geographic

factors (i.e. elevation, soil type) and social-related factors, which are usually influenced by

economic, demographic and building types (Cutter et al. (2003)). A higher risk impact here

implies that, if a particular gully pot is blocked and flood happen, it results in relatively

larger economic and social losses. In other words, we prefer to clean the gully pots with larger

impact more frequently to keep them working properly. Co-operating with Gaist Solutions Ltd.

and Blackpool local council, we firstly decide a list of social concerns with awareness of their

economic and population influence, as shown in table 3.1. Then, each gully pot is evaluated

by its location and the related social concerns.

Based on the existing data from Blackpool council, social concerns are classified in to three

groups: 1) residential property; 2) commercial and industrial areas including local and district

centres, business zones, and employment sites; 3) public services including schools, hospitals,

doctors and public transport routes. In table 3.1, the estimated value of each item in group 1

is the average residential house price in Blackpool UK GOV (2015). Group 2 takes account of

footfall and critical building prices for each item. The estimated value of items in group 3 is

based on average daily operation costs.

Flooding impact analysis involves large uncertainties. Research has shown historic flooding

from different perspectives (Changnon (1999); Thieken et al. (2008); Brouwer and Van Ek

(2004); Merz et al. (2004)). We do not expect a precise assessment of impact. Instead, we aim

to find values that are able to guide gully pot maintenance actions in decision making. Here,

we mainly focus on direct economic losses using a damage function which relates to property

type and water level. Thieken et al. (2008) propose the impact from a range of flood water

levels on different building types. After consulting Blackpool Council and Gaist Solutions Ltd.,

we decide to focus on the impact of floodwater levels of less than 21 cm. This gives value-loss
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Table 3.1: Average daily risk impact estimation of each gully pot

Group Social Concerns
Estimated

value
Value loss

from flooding
Risk

impact

1 Residential £113,000 3% £34

2 Local center £1,130,000 5% £580
District center £1,695,000 5% £870
Business area £565,000 5% £290

Employment sites £226,000 5% £116

3 School £5,168 4% £71
Large hospital £917,808 4% £377

Doctors £9,178 4% £73
Bus route £220 100% £37

figures (Table 3.1, third column) of 5%, 3% and 4% for commercial, residential and public

service areas, respectively. For public transport we focus on bus routes, estimating the cost of

closing a road section due to surface water flooding.

By analysing Blackpool historic flooding frequency (Blackpool (2009)), the probability of

flooding events is used to map the flooding value loss to the daily risk impact per gully pot

according to its location (last column of Table 3.1). We assume that gullies in the same section

of a street evenly share the responsibility for the risk impact evaluated in that area. Figure 3.2

illustrates the geographic distribution of gully pot risk impact in Blackpool.

Figure 3.2: Gully pots’ risk impact distribution in Blackpool
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3.3.2 Estimating the process of a gully pot blocking

Ahmad and Kamaruddin (2012) suggest that time-based maintenance is the normal strategy

in situations where equipment has a fixed lifespan or predictable failure behaviour. After

analysis of historic gully pot records, we model the gully pot blocking process using the Weibull

distribution model (Weibull (1951); Ebeling (2004)), from reliability theory. We define:

Fi(d, di) = 1− e−((d−di)/λ)α

The parameters of this form of Weibull distribution are the shape parameter α, and the

scale parameter λ. In our study, we define α = 6, based on historical data analysis; this

captures a realistically increasing blocking rate over time. The scale parameter λ, capturing

lifetime behaviour, is affected by location and seasonal factors, according to a simple linear

function:

λ =


10 ... if gully pot recorded as broken

Ecalling ... a calling event

max(90, E −
∑

f∈F nf ∗ sf ) ... normal state

Ecalling represents the expected number of days from a report on a gully pot to its servicing.

E is the expected number of days that it would take a normal gully pot to become blocked

since its last service. Here, E = 10.3 years, again based on historical data analysis. F is a set

of factors that may affect gully pot lifetime, such as street type, number of trees nearby, and

blown sand effect: nf represents the effect level from a specific factor f ∈ F to a gully pot;

sf adjusts the effect from factor f according to seasonal information. For example, if a gully

pot is on a street with five deciduous trees nearby, then historical analysis gives nf = 5 with

sf = 93, 1, 389, 433 in spring, summer, autumn and winter respectively. If a gully pot location

is not affected by factor f , we simply assign nf = 0. All values are based on our statistical

analysis of the Blackpool data. Fig. 3.3 illustrates two examples of gully pot lifetime estimation

taking account of the surrounding environment.

Alternatives to Weibull distribution For our gully system, we use a Weibull distribu-

tion with two parameters to estimate each gully pot’s life time, based on historical gully pot

failure behaviour analysis and consulting from our business partner, Gaist Solution Ltd.. Al-

ternatively, there is a large amount of research focusing on the asset life cycle management,

that predicts the asset breakage and degradation process of different types of assets. Liter-

ature shows some related research in bridge, pavement and water pipe maintenance systems

(Madanat and Ibrahim (1995); Morcous et al. (2002); Baik et al. (2006)). We could plug in

any realistic life time estimation method in to the risk driven model, in order to apply our op-
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(a) Example of a gully-pot lifetime with 1 tree nearby at different seasons

(b) Example of a gully-pot lifetime with 5 tree nearby at different seasons

Figure 3.3: Probability of a gully-pot being blocked since last maintenance action

timisation algorithm (Chapter 5) to create a maintenance schedule targeting the appropriate

assets.

Here, we summarise two groups of approaches that can be applied for other asset mainte-

nance problems in the future. All these approaches can be plugged into our risk driven model

as different risk value estimation. First, functional based models such as exponential (Shamir

and Howard (1978)) and time-powered models (Kleiner and Rajani (2001)) have been used

to determine the optimal timing of water pipe inspection and replacement. Time-dependent

Poisson (Constantine et al. (1996)) and the accelerated Weibull hazard models (Le Gat and

Eisenbeis (2000)) are also commonly used functions in industry. The second group of methods

use Markov chain-based deterioration models. A number of real-world applications can be

found in Madanat and Ibrahim (1995); Morcous et al. (2002); Baik et al. (2006). Different to

the functional based models, Markov chain-based models focus on the transition probabilities

between different grades, which also implies the asset life time are evaluated discretely.
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3.3.3 Other parameter settings for gully pot system maintenance

Having introduced the objective function’s two components (i.e. risk impact and probability

of failure state) for the gully system, we have the working duration constraint Tmax = 8 hours

each day; Hmax = 1 allows one vehicle work each day; K l
max = 1 for l ∈ {broken, normal},

where the type l = broken vehicle can repair any gully pot in its broken state, and the type

l = normal vehicle delivers servicing for gully pots in a normal state and those registered as

calling reports. Normally, a l = normal vehicle is able to fix the problem of a calling report;

in the special case that the l = normal vehicle finds the reported gull is in a broken state, a

visit from l = broken vehicle and a rescheduling is required.

3.4 Conclusion and Discussion

Table 3.2: Summary of difference between models

Risk driven model PVRP TOP

Expected
output

A solution that min-
imises the risk caused
by estimated failures in
the system for future
periods.

A solution that min-
imises the operation
cost within planning
periods (e.g. travel-
ling distance) while
satisfying all visiting
requirements.

A solution that max-
imises total collected
profits from visited
sites.

Required
inputs

1. Available vehicles; 2.
Risk value estimation as
a function of time for
each asset (riPi(d)).

1. Available vehicles;
2. Clear visit pat-
tern/frequency for each
customer within the
planning period.

1. Available vehicles;
2. Value/profit of each
customer.

Maintenance
Application
Scenarios

1. When visiting or
not is a decision vari-
able rather than a con-
straint; 2. When the
failure rate of each site
is dynamic;

1. When each cus-
tomer has clear visiting
requirements;

1. When visiting or
not is a decision vari-
able rather than a con-
straint; 2. When the
value/profit of each cus-
tomer is fixed.

In this chapter, we propose a risk driven model to capture the major characteristics of a

general geographical distributed maintenance problem. Many other models have been discussed

in Section 3.1.2. We would like to summarise the differences between our risk driven model and

two closely related standard models, PVRP and TOP. The aim is to clarify the suitable real

world situations for each approach and to summarise the required inputs for each model. As

shown in Table 3.2, the main difference between our risk driven model and PVRP is whether

visiting a customer/asset is a decision variable or a constraint. The TOP model also decides

whether to visit a certain customer. Comparing the risk driven model with the TOP, our risk
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driven model introduces a dynamic value (risk, measured by riPi(d)) of each asset, based on

time information d, instead of a fixed value or profit from each site.

In comparison to the multi-period profit maximisation models for real-world problems (Sec-

tion 3.1.2.2), apart from being a risk minimisation problem, rather than a profit maximisation

problem, our risk driven model runs in a continuously dynamic scenario, where failure events

may happen at any time. Over a short period (W days) our risk driven model has strong

similarities to multi-period profit maximisation models. All these models introduce a dynamic

value prediction or measurement of each asset over time. For example, our risk driven model

uses an estimated risk according to the date and Baptista et al. (2002) use an estimated num-

ber of papers at each collection site on any day. These values are critical to make despatching

decisions and designing these value measurements requires domain specific knowledge. On the

other hand, the risk driven model is typically applied over a much longer period. This is bro-

ken down into shorter sections of W days for computability. To deliver an optimal scheduling

strategy in the long term, ther parameter W should be chosen wisely.

In the following chapters, we firstly use a simulation based approach to investigate the

weakness of a manual maintenance schedule strategy that are widely used across local councils

in the UK (Chapter 4). Chapter 5 focuses on automating the maintenance scheduling supported

by intelligent data analysis and estimation.
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CHAPTER 4

Risk driven analysis of a manual strategy for gully pot system

maintenance scheduling

In Chapter 3, we introduce the gully pot system maintenance problem and propose a risk

driven model that captures the risk impact of gully pot failure and failure behaviour. In this

chapter, we use a simulation based approach to understand the weaknesses in the manual

strategy. We propose to evaluate the quality of maintenance scheduling strategy using the

average daily risk caused by gully pot failures in the system and conduct what-if analysis on

the manual strategy. The data required for simulation is provided by Blackpool council, a

client of Gaist Solutions Ltd.. The content in this chapter has been approved by the city’s

consultant from Gaist, and has also been published in Chen et al. (2016f,e)

4.1 Introduction

This chapter focuses on two factors that may affect the scheduling of maintenance actions:

the issue of parked cars and up-to-date gully pot status information. In the current gully

pot system maintenance situation, during the preventative maintenance, some gully pots are

inaccessible due to parked vehicles. Historical maintenance records show that this is a striking

issue: about 8.3% of gully pots are not serviced each year because of parked cars. Apart from

the parking issue, we also notice another weakness of current maintenance scheduling strategy,

namely untimely system status information. Currently, all the broken or blocked gully pots

are either reported by local residents or found through preventative maintenance. This passive

situation potentially leads to uncontrolled surface water flooding.

In order to discover techniques or policies that could improve current gully pot mainte-

nance, this chapter considers the gully pot maintenance as a risk-driven problem, as described

in Chapter 3. The current widely used manual maintenance strategy, which includes both

preventative and corrective actions, is evaluated by the risk caused by failures in the system,

across various scenarios.

The remainder of this chapter is organized as follows. Section 4.2 states the daily risk

evaluation function for the gully pot system. Section 4.3 introduces our simulation process of
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the current manual scheduling strategy. Section 4.4 presents additional simulation assumptions

and environment settings. Section 4.5 the impact of parked cars and Section 4.6 illustrates the

benefits of conditional based maintenance. A summary of investment suggestions based on our

simulations are provided in Section 4.7.

4.2 Evaluation of maintenance schedule strategy quality

We use the risk measurement function to evaluate the quality of maintenance schedules over the

simulated period. Each day, we calculate the risk of surface water flooding due to blocked/broken

gully pots. This is evaluated by Function 4.1:

N∑
i=1

riPi(d) (4.1)

Note that the Function 4.1 is the daily gully pot system risk element of Function 3.1

(Chapter 3). The methods of deriving each part of the risk measurement for each gully pot are

introduced in Section 3.3

4.3 Simulation of current manual scheduling strategy

In order to discover techniques or policies that could improve the current gully pot mainte-

nance, we would like to simulate the actual scheduling strategy that is widely applied across

local authorities. In the real world, maintenance schedules are generated at varying levels of

granularity, from long term (yearly) to short term (weekly). To mimic the manual schedule

impact, we directly consider the short term planning that continuously creates the daily based

despatching schedule. We first generate a set of fixed preventative routes for all gully pots in

the system and adjust our schedule plan weekly with consideration of emerging failure events.

The simulation process captures the key points of the current manual strategy in Blackpool

and is approved by Gaist Solutions Ltd.. We summarise the procedure as follows.

• Step1: Construct efficient preventative maintenance routes Sfixed for all gully pots in

the system (Section 4.3.2).

• Step2: Collect recent information on emerging broken/blocked gully pots from either

local residents’ reports or daily preventative maintenance. Generate reactive routes for

these problematic gully pots (Section 4.3.3).

• Step3: Generate a maintenance schedule for the near future (Section 4.3.4).
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This overview of the simulation process of the manual scheduling strategy, presents a num-

ber of technical issues that need to be solved. In the following subsections, we present the

detail techniques used to generate a large set of distance optimised routes.

4.3.1 Reduce the problem size

Gully pot system maintenance is a large-scale problem. Simulating the scheduling process

for such a system is a computational challenge. To be able to deliver the analysis within

reasonable CPU time whilst retaining enough information to build feasible cleaning routes

and track gully pot condition, we group gully pots located on the same section of street. As

shown in Figure 4.1(a), we assume that these gully pots share the same environmental factors

(Section 3.3.2). Gully pots in the same group are always scheduled together for preventative

maintenance. The service time of a group includes both cleaning time for the gully pots

and travelling time inside this section of a road. This representation also maintains traffic

distance: for instance, the distance between group point 1 to group point 6, in Figure 4.1(b),

is the road distance measured from the red node of road 1 to the green node of road 6, in

Figure 4.1(a). Furthermore, individual gully pot states (i.e. normal, calling, broken) are still

recorded, because unexpected damage or blockage events may happen to any of them: this

allows corrective actions to be accurately tracked. A gully-pot-cluster is labelled as in normal

state only if all the gully pots included are in normal state. The risk of a gully-pot-cluster is

the sum of all included gully pots’ risk at any given time.

(a) Example of gully pot on street (b) Example of grouped information

Figure 4.1: Reduce the size of a gully-pot system maintenance problem

By applying this grouping strategy, we reduce the preventative maintenance problem size

from 28,149 to 9,277 points. For corrective actions, routes are built on problematic gully pots,

which only comprise a small vehicle routing problem.
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4.3.2 Generate preventative route set

To build up the fixed preventative route set, we consider solving a vehicle routing problem

(VRP) (Section 2.1). The objective is to minimize the total travelling distance, with constraints

including: 1) all gully pots in the system should be visited at least once; 2) all routes should start

and end at the depot; 3) no route travelling time should exceed the working hours constraint.

VRP solver The VRP solver starts from an initial vehicle routing solution, constructed

using the Clarke-Wright (CW) Savings heuristic (Section 2.1.2.1). After an initial solution

is constructed, the improvement phase uses variable neighbourhood search (Section 2.1.2.3)

embedded with i-relocate and i-cross-exchange shaking operators (Section 2.1.2.2) and a local

search phase. A similar process is used by Hemmelmayr et al. (2009) in their daily VRP solving

stage. In total, 12 neighbourhoods are implemented. The order of neighbourhoods is i-relocate

(i = 1; 2; 3; 4; 5; 6) and then i-cross-exchange (i = 1; 2; 3; 4; 5; 6).

In order to enhance the solution quality, a local search strategy is used after a solution is

obtained through “shaking”. The single route operator, 3-opt (Section 2.1.2.2) is adopted in an

iterative first improvement procedure. Only the two modified routes have to be re-optimized.

Maximise usage of working time After finding the optimised VRP solution, we still can

not guarantee that every route maximises the use of the daily time limitation. Therefore, for

each route in the preventative route set Sfixed, we try to insert the closest points which are

not already included using least cost insertion (Section 2.1.2.1), until no more points can be

inserted without breaking the working time limitation.

Discussion In our simulation, all the preventative gully maintenance routes minimise the

travelling distance and maximise the usage of daily working time. This assumption produces

routes that are better than the routes used in reality. Delivering on-site service normally has

considerable variance in terms of service time and total working time. We use the average

service and travel time, assuming that the impact of variance will cancel out over the long

period of analysis.

4.3.3 Generate reactive routes set

Before producing the schedule for the following week, we create the reactive routes set, based

on emerging events information. During the last week, a normal callings and b broken reports

are received. Calling reports that have not been addressed and the a new calling reports make

up the set Vcalls. In the same way, we also get a set Vbroken. When a call is received, we register

the cluster ID (Figure 4.1) so that the schedule can inspect gully pots around the reportedly
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problematic ones; however, when broken pots are discovered through preventative maintenance

or inspection, we register them individually.

The VRP solver described above (Section 4.3.2) is used for both Vcalls and Vbroken to create

candidate route sets Scalls and Sbroken, respectively.

At this point, we have a candidate routes set, Sall, (including preventative routes, reactive

routes that contain reported gullies and reactive routes that contain broken gullies) optimised

in distance:

Sall = Sfixed ∪ Scalls ∪ Sbroken

4.3.4 Produce schedule manually

At the end of every simulated week, we select seven routes from the candidate route set and

assign them into the following working days in the next week. Only one route is executed

for each day in the planning horizon. Priority is given to the routes that contain broken and

blocked gullies (corrective maintenance). When all the reported problematic gully pots have

been serviced, the crew comes back to the preventative maintenance in the following day if

there are still some days left in this week. The preventative routes s ∈ Sfixed are serviced in

turn and are arranged in descending order of risk
∑

i∈s riPi(d) measured at the beginning of a

year.

4.4 Simulation assumptions and environment settings:

After introducing the process to mimic the manual scheduling strategy, we make a few addi-

tional assumptions in our simulation, as follows.

1. In the real world, the number of working days every week varies depending on local

council requirements: in the following experiments, we assume seven working days per

week; holidays are not considered.

2. Parking issues: inaccessibility during maintenance due to parking predominantly affects

preventative maintenance. For reactive actions, including servicing for both resident

reports and broken gully pots, our simulation assumes that the team always has access.

Environment simulation settings In the simulated environment, we consider each gully

pot’s blocking behaviour according to seasonal and location information. Also, we add some

random broken events to add some unpredictable elements to the environment. Detailed de-

scriptions are as follows.

1. Total number of gully pots in the system: 28,149.
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2. Broken events: Blackpool council estimates about 1.1% to 1.8% of gully pots are bro-

ken every year. This is represented by each gully pot becoming broken randomly with

probability from pb = 0.00003 to pb = 0.00005 per day in our simulation.

3. Blocking probability: a gully pot lifetime is estimated by a Weibull distribution (Section

3.3.2). Every day, each gully pot has a probability of becoming blocked according to

its failure rate function hi(d) = Ri(d−1)−Ri(d)
Ri(d−1) , where Ri(d) = 1 − Fi(d) is the reliability

function.

4. Seasonal factors F : the Blackpool data only allows us to include trees and leaf-fall in

our simulation. Seasonal factors related to the number of trees nearby highly affect the

lifetime of gully pots, and on average, each gully pot is affected by 0.4 trees in Blackpool.

5. Resident calling behaviour: about 1700 calls are received every year by the Blackpool

gully maintenance team, and most of the calls concern blocked or damaged gully pots.

Over 50% of all calls occur during the autumn, as shown in Figure 4.2. Our statistical

analysis determined that, to match the resident calling behaviour in our simulation, on

any given day, the probability of receiving a call if a gully pot is already broken or blocked

is pcalls(i) = {0.0033, 0.005, 0.0056, 0.002} for spring through winter, respectively. If a

gully pot is not broken, there is still a small chance that a call is received, related to its

current condition. The simulation probability is pcalls(i) = Pi(d) ∗ γ, where γ = 10.62 is

the value to adjust the calling probability to match the real data and has been measured

experimentally.

Figure 4.2: Seasonal calls and blockages as a percentage of the total number of gully pots in Blackpool.

These parameters and assumption have been discussed with Gaist Solutions Ltd. and

agreed to be a realistic representation of gully-pot behaviour in Blackpool. All simulations

were implemented in C# and executed on a cluster composed of 8 Windows computers, each

with 8 core Intel Xeon E3-1230 CPU and 16GB RAM. We evaluate the maintenance quality

using average daily surface flooding risk caused by the gully pot system over simulated four

years.
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4.5 The impact of parked vehicles

According to the maintenance records, parked vehicles have been identified as a major problem

that decreases the maintenance working efficiency, especially in the old town, where no extra

space was designed for parked cars. Our simulation helps us to understand the impact of parking

on gully-pot maintenance performance. Therefore, potential strategies can be proposed such

as “banning parking” when a maintenance visit for a certain street is scheduled.

In simulation, we can test the effect of inaccessible gully pots using a parameter, x, to

represent the percentage of gully pots that cannot be accessed during preventative maintenance

each year. The values of x that we test are 0, 5, 8.3 (the actual value for Blackpool), 10 and

15 percent. Each parameter setting is run over 4 simulated years, with corresponding seasonal

factors and residential report behaviours. We test two environments with the random broken

events probability setting equal to either pb = 0.00003 or pb = 0.00005. We refer to these

environments as stable and dynamic, respectively. The aim is to test the effect of parked

vehicles in different degrees of uncertainty.

(a) Stable environment, pb = 0.00003 (b) Dynamic environment, pb = 0.00005

Figure 4.3: The average daily risk using the manual maintenance schedule, with different in accessibility

settings during preventative maintenance. The bar with the setting of 8.3% is the current real-world

situation. Error bars show 95% confidence intervals.

The results of simulation are shown in Figure 4.3. First, we can see that there is an

increase in flooding risk as the percentage of inaccessible gully pots increases in both scenarios.

The simulation result suggests that a policy of banning parking on streets to be serviced might

improve maintenance efficiency by about 14% and 8% in the stable and dynamic environments,

respectively. In reality, a “banning parking” policy may only partially decreases the number

of parked cars, if the percentage of inaccessible gullies is 5%, very different behaviours are
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shown in different environments. A nearly 12% risk reduction can be obtained in the stable

environment, but little difference in risk can be observed in the dynamic environment. As the

rate of car ownership continuous to increase, the impact of parked cars could become more of a

problem, when the percentage of inaccessible gullies increases up to 15%, the surface flooding

risk increases significantly by about 10% and 12% respectively.

This result tells us that parked cars pose a significant risk in both environments. Compar-

ing the stable and dynamic environments, we can see the different stages of risk increase with

different percentages of inaccessible gullies. The results suggest that different degrees of “ban-

ning parking” for different environments should be considered. For the situation in Blackpool,

further investigation and more accurate estimation of the environment is needed to deliver the

optimal policy while using the least effort.

4.6 What if we could do condition-based maintenance (CBM)?

Aside from parking issues, seasonal changes and untimely system status information are identi-

fied as other factors that affect the efficiency of drainage system maintenance. Seasonal change

is an uncontrollable factor. On the other hand, improving low-cost sensor techniques makes it

potentially feasible to continuously monitor gully-pot condition. This would allow our schedul-

ing strategies to be combined with CBM, discussed in Section 3.1.1. Currently, we only find

out that a gully pot is blocked or broken either during preventative maintenance or if it is

reported; because of this incomplete system information, it is difficult to produce any optimal

schedules.

In simulation, we can test the importance of real time failure monitoring by varying the

proportion of gully pot failures that are known immediately, as if the gully pot had a real-

time sensor. In these experiments we consider more scenarios than the stable and dynamic

environments introduced in Section 4.5. For each of the environments, we consider three

starting conditions. A normal, well maintained system. A well maintained system after a

natural disaster (recover-1) and a badly maintained system after a natural disaster (recover-2).

Parameter settings for each of scenario are presented in Table 4.1.

As the simulation scenarios shown in Table 4.1, the normal state assumes that the entire

system is well maintained and the number of days since the last maintenance action for each

gully is uniformly distributed across 1.1 years and 1.5 years in the environment with two

different uncertainty degrees respectively. In addition, we also test scenarios that assume the

system is recovering from a natural disaster such that a large number of gullies are broken or

blocked initially regardless of prior maintenance. Both a well maintained gully-pot system and

a system that has had bad maintenance are tested (see Figure 4.5).

Figure 4.4 presents the average daily risk of systems with various coverage of sensors over
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Table 4.1: “since last maintenance” and “initial broken gullies” set the system’s initial state: for all

gully pots, the days since their last service are evenly distributed in θ years. We randomly assign a

percentage of gully pots to be in the broken state.

Stable (pb = 0.00003) Dynamic (pb = 0.00005)

Since last
maintenance

θ

Initial broken
gullies

Since last
maintenance

θ

Initial broken
gullies

normal 1.1 0.4% 1.5 0.7%

recovery-1 1.1 2% 1.5 2%

recovery-2 3 2% 3 2%

(a) Stable environment, pb = 0.00003 (b) Dynamic environment, pb = 0.00005

Figure 4.4: Performance of the manual scheudling strategy in normal scenario with sensors of different

sensor installation capacity. Error bars show 95% confidence intervals.

a set of four-year simulations. As shown in Figure 4.4(a) for a well maintained system, in

comparison to the simulation of current passive corrective maintenance (No sensor), the instant

information simulation (All sensor) shows a reduction in risk of about 92%. A similar impact

of instant information can also be observed in the dynamic environment, which brings a risk

reduction of 94% (Figure 4.4(b)). In the current situation simulation (No sensor in Figure

4.4), residents’ reporting behaviour in different seasons strongly affects the response time for

attending failed gullies. If a gully pot breaks or blocks in winter, this may be only found

through preventative maintenance in the next year. Such late responses to problematic gully

pots gradually accumulates risk over time. This may explain the skewed risk distribution across

different seasons. The result reveals that depending entirely on reporting by local residents

effectively hides the dangers to the system. For the case where all gully pots have instant

(sensor) information (All sensor), the results clearly show the impact of seasonal factors: falling

leaves and wet weather in autumn increase risk by about two times compared to other seasons.

To provide further insight into how the availability of information on gully pots affects

flooding risk, we adapt the simulation to provide instant information from only some locations,
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simulating the localised installation of sensors. Setting 10% of gullies to have sensors allows

us to compare an even distribution of sensors (Random 10% ) to the results when sensors are

focused on critical areas of the city (HighRiskImpact 10% ). We find that focusing on high risk

areas reduces the daily risk, on average, by about 28% in the stable environment (Figure 4.4(a))

and about 50% in the dynamic environment (Figure 4.4(b)). When monitoring is increased to

cover 30% of the gullies, the comparable risk reductions are 75% and 72%, in the stable and

dynamic environments respectively. This result shows that it is much more useful to track the

status information from gullies located in critical areas.

(a) Daily risk tracking of scenario recovery-1,
pb = 0.00003

(b) Daily risk tracking of scenario recovery-2,
pb = 0.00003

(c) Daily risk tracking of scenario recovery-1,
pb = 0.00005

(d) Daily risk tracking of scenario recovery-2,
pb = 0.00005

Figure 4.5: Performance of the manual scheudling strategy in recovery state with sensors of different

install capacity.

Figure 4.5 illustrates the daily risk change over two years in the recovery states. In sce-

nario recovery-1 (Figure 4.5(a) 4.5(c)), the system with full sensoring performs the best in

terms of recovery speed, followed by the HighRiskImpact 30%. The faster recovery also implies

lower total surface water flooding risk through the recovery period. In scenario recovery-2

(Figure 4.5(b) 4.5(d)), due to the previously poor system maintenance, the recovery period

is significantly longer in all cases compared to recovery-1. Also, the peak point uncovers the

vulnerability of a badly maintained system during the high-risk season (autumn). However,

the sensoring still helps the maintenance team to produce a more informed schedule, which
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results in less total risk during the recovery period.

Comparing the recovery behaviour under stable and dynamic environments (Table 4.1), the

system recovers slightly slower in the dynamic environment. Even though the absolute value of

normal state risk and risk peak points are affected by the environment uncertainty, we can see

very similar overall patterns in both environments settings. In the following experiments, we

focus our analysis on the dynamic environment (pb = 0.00005), which should give us a robust

understanding of the impact of maintenance on the flooding risk of gully pot system.

4.6.1 Reliability

The above simulations show the contribution of timely information to improving the gully-

pot system maintenance quality. However, installing and maintaining a sensor system also

increases the management complexity, where extra cost and manpower are needed to ensure

that the system is always working correctly. Furthermore, we assume in our simulation that

instant gully-pot condition information can be received with no errors, which is hypothetical.

In practice, current sensor techniques can achieve up to 85% reliability (See et al. (2012)). To

justify the benefit from potential sensor technique in more realistic scenarios, we test various

situations in which false negative and false positive error information is sent by sensors.

In the previous simulations, a blocked gully pot is reported immediately if a sensor is

installed. In the following experiments, we assume that a sensor may fail to report the gully

pot failures with a probability from 0% to 30%, labelled as false negative error in Figure 4.6.

If a sensor fails, the gully pot failure information relies on traditional reporting from local

residents. Meanwhile, for any gully pot in its normal state, an installed sensor may send a

false alarm (also called false positive error) with probability from 0% to 30%. We run the

maintenance simulation as if there is a full sensoring system, over four years, in the normal

scenario (see Table 4.1).

The results of average daily surface water flooding risk are illustrated in Figure 4.6. From

Figure 4.4 and Fig. 4.6, we can see that the overall maintenance quality in a full sensoring

system, in terms of surface water flooding risk management, is still well controlled across

all seasons, even with the probability of both false positive and false negative errors up to

30%. In the relatively stable seasons (spring and summer), the false reports show no strong

effects on maintenance quality. In the autumn period, many reactive actions emerge due to

the increasing failure rate of each gully pot and the number of local residents’ complaints. A

large number of false alarms disrupts necessary maintenance in this period, resulting in a risk

increase of about 28%. Interestingly, when the false negative error slightly increases in this very

dynamic season, the maintenance quality slightly improves. A further investigation suggests

that delayed reporting of problematic gullies in the dynamic season helps to construct more

61



Chapter 4. Risk driven analysis of a manual strategy 62

(a) Spring (b) Summer

(c) Autumn (d) Winter

Figure 4.6: Average daily surface water flooding risk over a four years simulation in the normal scenario.

A full sensoring system with false alarm and false negative errors is considered.

efficient maintenance routes to some extent. This result actually reveals that always giving

priority to fixing problematic gullies is not an optimal strategy. More experiments related to

optimising the scheduling strategy are discussed in Chapter 5. In the winter period, when

the failure rate of each gully pot is high but residents’ reports are rare, large risk increases

can be observed when the sensors’ false negative rate increases up to 30%. This result reveals

the importance of a reliable sensoring system, particularly if it is the dominant information

resource.

Further discussion Whilst the use of sensors might be of benefit in maintenance scheduling

and risk reduction, the realism of this approach needs further consideration. Accurate sensor

information depends not just on the sensor detecting problems, but also on communication

performance, which decreases in weather condition such as rain or snow (See et al. (2012)).

The gully-pot system maintenance should combine a risk estimation approach (i.e. Section 4.2)

with sensors to deliver optimized scheduling.

Our simulation shows large advantages when sensors are installed in high-risk areas. How-

ever, since sensors must be close enough to communicate wirelessly with each other, optimisa-
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tion of the sensor network topology must be considered (See et al. (2012); Yick et al. (2008)).

4.6.2 Can we reduce maintenance frequency when providing CBM?

Historic gully pot maintenance records from several local councils of the UK, show that the

working frequency and pattern vary according to local policies. Our simulation experiments

so far have assumed that the maintenance schedule is updated every week and the crew works

7 days a week. In order to further explore whether the installation of sensors is worthwhile,

we compare the impact of reducing maintenance frequency on a no-sensoring system and full-

sensoring system. To set up the simulations, the same scheduling policy is used (see Section

4.3.4), except that the maintenance crew only works for the first x days every week.

Figure 4.7: [Performance of the manual scheduling strategy with different working frequency in the

normal scenario: from four days per week to seven days per week. Error bars show 95% confidence

intervals. Legend: sensorInfo workingDays

Figure 4.7 shows the average daily risk over a four-year simulation with different working

frequency settings. Firstly, we can see the that the risk increases as the working frequency

decreases in both no-sensoring and sensoring system. In the relatively low-risk seasons of

spring and summer, the advantage from using a sensoring system is still apparent when we

reduce the working frequency down to four days per week. However, the lack of maintenance

leads to a series of problems in high-risk seasons (autumn and winter). Our results suggest

that local authorities might make savings by using different working frequencies according

to seasonal information. Comparing the result of five working days with sensoring to seven

working days without sensoring, we can potentially improve the maintenance quality by about

76%, whilst reducing working time by 30%.

Figure 4.8 illustrates detailed daily risk changes over five-year simulations under various

working frequencies. All simulations start from the same initial state as the normal scenario
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shown in Table 4.1, which assumes that the previous working frequency is seven days per

week. Firstly, we can see that, when applying sensoring, the gully pot system can be restored

within about a month. In the first year, the daily surface water flooding risk caused by failures

in the gully pot system fluctuates at about £1,200 and £16,000, for the system with and

without sensoring respectively. A dramatic risk increase can be observed in the second year,

in the autumn period when we decrease the working frequency down to four days per week in

both no-sensoring and sensoring system. This risk fluctuation pattern repeats in subsequent

autumns. Once again, the result shows that insufficient maintenance will lead the system to

a vulnerable situation, especially during high-risk seasons. Furthermore, this effect persists,

even when perfect system status information is given by the sensors.

Figure 4.8: Daily risk tracked over a simulation of five years using the manual scheduling strategy with

different working frequency in the normal scenario. Legend: sensorInfo workingDays. (Lower risk is

better)

The results above illustrate the minimum number of days (i.e. five days a week) required

to maintain the advantage due to timely system status information. To further explore the

damage of insufficient maintenance frequency, we decrease the number of working days down

to three days per week. The results, Figure 4.9, show that there is no significant effect from

this reduction of working frequency in the first year. However, the reduced maintenance results

in gradually accumulated hazards, and these are suddenly exposed later, in what appears to

be a critical threshold effect.
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Figure 4.9: Daily risk tracked over a simulation of five years using the manual scheduling strategy with

different working frequency in the normal scenario.

Focusing on the peak values, Figure 4.10 plots the worst risk value found in the simulation

runs for the different working frequencies. The results show a clear, exponential risk increase

in the worst situation when we decrease the working frequency every week. This result again

highlights the negative consequences of insufficient system maintenance.

Figure 4.10: Peak risk value using different working frequency for a gully-pot system with full sensoring.

4.7 Conclusion

This chapter considers two factors that decrease the maintenance performance of the current

manual schedule policy. We use simulation to explore the effect on maintenance scheduling and

risk of “parking issues” and “untimely system status information”, both of which are known

weaknesses of the current manual maintenance approach.

Our simulation results suggest that a “banning parking” policy might reduce the surface

water fooling risk to some extent. However, if such a policy can only partially decrease the

number of parked cars, little effect is observed in risk reduction. In addition, this policy may

also increase management complexity and residents’ complaints.
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When we analyse the scenarios in which timely gully pot status information can guide

our maintenance schedule, the results show that the “untimely information” is a significant

factor in lowering the efficiency of maintenance. Exploring the hypothetical use of sensors to

provide timely information, our simulation results show that significant risk reduction can be

obtained by sensor informed maintenance. Low-cost wireless sensor techniques could be a good

investment to help produce an informed maintenance schedule and lower risk. Even in practice,

where the sensor technique can not achieve up to 100% reliability, our preliminary simulations

show that a full-sensoring system can cope with up to 30% false positive and false negative

error information. Furthermore, the benefit of sensoring can still hold when we reduce the

working week by two days.

Further work is needed to form a cost/benefit analysis to discover the optimal quantity of

sensors to deploy, their locations and network topology. New scheduling approaches may be

required to make best use of the potentially large amount of data generated by the sensors.

In the next chapter, we will look at how to improve the current manual maintenance

scheduling using the available gully pot information (estimated and known). We propose

a predictive scheduling strategy that automatically adjusts despatching of preventative and

corrective actions according to environment changes.
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CHAPTER 5

Optimisation of a gully-pot system maintenance scheduling

In this chapter, we continue the research on the gully-pot system maintenance problem,

moving from investigating policies that can improve efficiency with existing manual scheduling

approaches (Chapter 4) to improving the scheduling process itself. We aim to automate the

scheduling process, using a risk driven model to guide despatching of maintenance actions and

optimise the service route simultaneously. This work has been published in Chen et al. (2016b).

5.1 Introduction

To solve our gully-pot system maintenance scheduling problem, we consider the risk driven

model presented in Chapter 3. For completeness, we recall the high level objective (Equation

3.1) that is to select a judicious subset of gullies from N and assign them to days of the following

short period, in order to minimize the risk in this period:

∑
d∈W

N∑
i=1

riPi(d)

In the above equation, each gully-pot i in the system is associated with a risk impact value

ri. In a general sense, a higher risk impact here implies that if a particular gully-pot is blocked

and floods happen, it results in relatively larger economic and social losses. Details of the

estimation of ri for each gully-pot in Blackpool is introduced in Section 3.3.1. Pi(d) describes

the probability that a gully-pot i is in its failure state on day d. We introduce a Weibull

distribution that considers seasonal and local factors to adjust each gully’s life time estimation

(Section 3.3.2).

An interesting feature of our problem is that the objective function is designed for a short-

term scheduling problem, but the overall aim is to analyse the scheduling impact for long-term

risk management. Due to the changing environment and unexpected emerging situations, we

cannot assume any repeated schedules between periods. To solve the long-term scheduling

problem, a rolling horizon approach is devised, in which the short-term problem is solved

repeatedly, given updates to environment and gully-pot status.

We propose an approach that maintains a set of distance optimised routes evolving with the
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environmental changes over time. We apply a tabu-based hyperheuristic – binary exponential

back off (BEBO) (Remde et al. (2009)) which manages a set of route-adapting and scheduling

local search operators to improve the scheduling solution iteratively.

Originally, hyperheuristics were designed for the purpose of automatically choosing the

right low level search strategies at each decision point (Cowling et al. (2000)). There is good

evidence that hyperheuristics can be successfully applied to various combinatorial problems,

such as timetabling (Burke et al. (2007a); Bai et al. (2012)) and vehicle routing (Garrido and

Riff (2010); Misir et al. (2011); Walker et al. (2012)). In Part II, a detailed introduction and

experimental analysis of hyperheuristics, including BEBO, is presented.

The remainder of the chapter is organised as follows. Section 5.2 describes a predictive

scheduling strategy to solve the gully-pot system maintenance problem. A comprehensive

discussion and analysis of a set of drainage system maintenance policies is given in Section 5.3.

Finally, we present the conclusion and directions for future research in Section 5.4.

5.2 Solution approach – predictive scheduling strategy

In the simulation of the current manual scheduling strategy (Section 4.3), we described how

to generate the candidate route set for preventative and corrective actions. Our predictive

scheduling strategy (PSS) maintains a similar candidate route set. However, in order to sched-

ule the routes in a smarter way, we add a new data structure to efficiently re-evaluate the risk

of each route at any decision point. Furthermore, adaptations are described to dynamically

modify the route structure according to changes in the environment.

5.2.1 Solution representation

Figure 5.1 shows the data structure used to store the solution. A |W | days schedule contains

selected |W | IDs of candidate routes. Each route in the candidate set is optimised on distance.

A route is composed of an ID, route information and the actual tour. Route information

includes up to date gully-pot condition which helps to produce schedules, shown as follows:

1. route length;

2. number of gully-pots;

3. current route risk, which is the sum of the risk impact for each gully-pot multiplied by

that pot’s current failure rate;

4. tabu tenure l in days, which is used to stop the revisiting of the same preventative route

in the near future.

68



Chapter 5. Optimisation of a gully-pot system maintenance scheduling 69

Figure 5.1: Solution representation and data structure for storing candidate routes

5.2.2 Candidate route set management

The candidate route set (Figure 5.1) consists of an initial fixed routes set (Section 5.2.2.1), a

re-optimised routes set (Section 5.2.2.2) and a reactive routes set (Section 5.2.2.3). A solution

to our problem selects |W |-routes from this set and specifies the order they are serviced in.

5.2.2.1 The initial fixed route set

Routes optimisation is very CPU intensive, especially for such large problems. Constructing

routes repeatedly in a rolling planning schema is not efficient. Once the initial fixed routes set

is built, these tours are not changed during execution; the fixed routes set stores the initial

solutions for preventative maintenance.

Here, we start by finding a group of optimised candidate routes that can be scheduled

directly or adjusted based on updated information before the use of the route in future days.

At this stage, we treat the problem as a static VRP without considering any risk impact or

lifetime information. To build the fixed preventative route set, we use the same process as in

the manual approach (Section 4.3.2).

At the end of the initial route set construction, we will have a route set Sfixed that visits

every gully-pot at least once and each route has minimised in distance and maximised in the

usage of time limitation Tmax.
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5.2.2.2 The re-optimised route set

Routes in the re-optimised routes set, denoted as Sreopt, are repeatedly updated during optimi-

sation, as a result of environmental changes that cause gully-pot status changes. Section 5.2.3

describes the process of generating routes in this set in detail. The size of the re-optimised

routes set is fixed at m routes. When the set is full and new routes are generated, the oldest

route is replaced.

5.2.2.3 The reactive routes set

Reactive routes are built in the same process introduced in manual scheduling (Section 4.3.3);

before scheduling routes into days, we create candidate routes in the reactive routes set based

on emerging events information. All these routes are discarded when a schedule solution is

executed.

Again, same method is applied to create candidate route sets Scalls and Sbroken (Section

4.3.3). In addition to the Scalls result produced in manual scheduling simulation, each route in

Scalls is treated as an opportunity to clean more normal-state gully-pots on the journey, as the

same vehicle is used for the task. So, for each route in Scalls, we try to insert the closest gully-

pot-cluster (see Section 4.3.1) that are in a normal state, and whose time since last service is

longer than 30 days. We use least cost insertion, until no more points can be inserted without

breaking the schedule duration constraint based on Tmax. We denote the further optimised

route set as S∗calls

At this point, we have a candidate routes set (including initial fixed routes, routes that

mostly contain reported gullies and routes that only contain broken gullies) optimised in dis-

tance:

Sall = Sfixed ∪ S∗calls ∪ Sbroken

5.2.3 Producing a schedule

The PSS runs in continuous time, Figure 5.2 illustrates an overview of the system information

flow, and Algorithm 5.2.1 describes our rolling horizon optimiser that automatically selects

appropriate maintenance actions (either preventative or corrective) for the upcoming period.

5.2.3.1 Initialization

The initial schedule simply chooses the |W | number of routes with tabu tenure ls equal to zero,

from all candidate routes, Sall, with highest risk,
∑

i∈s riPi(today).
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Figure 5.2: Overview of system operation

5.2.3.2 Improve the schedule using BEBO heuristic

The improvement stage is developed from a tabu search based hyperheuristic method – binary

exponential back off (BEBO), proposed by Remde et al. (2009). BEBO has the fundamental

structure of a hyperheuristic search strategy – a trial set of low level heuristics (LLHs) and

systematic rules that control the usage of each LLH. BEBO uses dynamically adapted tabu

tenures (Glover and Laguna (2013)) during the search process, which is especially useful when

large neighbourhoods are involved. If a LLH performs poorly in a recent search, it is disabled

for a number of iterations. If the LLH performs poorly continuously, the number of forbidden

iterations increases, governed by a “backoff ” value. The detailed searching framework is shown

in Algorithm 5.2.2 (Remde et al. (2012)).

Apart from the hyperheuristic framework, a well-designed set of LLHs is crucial to success-

fully applying a hyperheuristic. In our implementation, the LLHs are designed at two levels: 1)

route-related moves that modify routes by changing segments or points in or between routes;

2) schedule-related moves that assign an optimised route to a day. The value of a solution is

measured by the objective function in Equation 3.1.

H Route related moves:

The following route related moves are only applied to preventative routes and routes that con-

tain mostly reported calls. Fixing broken gully-pots is carried out by a different vehicle. These

reactive routes s ∈ Sbroken are constructed as described in Section 5.2.2.3 and no more route

structure optimisation is processed.
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Algorithm 5.2.1 Rolling horizon optimiser – algorithm sketch

Define:
De: Sfixed is the initial fixed route set containing distance optimised routes.
De: Sreopt is a set of distance optimised routes that are updated during the search according
to the recent gully-pots risk information; initially Sreopt = ∅
De: ls is the tabu tenure of route s in days, to stop revisiting of this route in near future
(Section 5.2.1).
De: us is a flag parameter to prevent cyclic testing of route s when using the scheduling-
related LLHs (i.e. LLH3,LLH4 in Section 5.2.3.2)
Rolling horizon repeat every |W | days:
De: 1. Generate Scalls and Sbroken based on emerging events. ∀s ∈ S∗calls ∪ Sbroken, ls = 0
De: 2. Get the candidate routes set Sall = Sfixed ∪ Sreopt ∪ S∗calls ∪ Sbroken. ∀s ∈ Sall, us =
false
De: 3. Generate |W | days schedule solution x that minimises the objective function 4.1
(Section 5.2.3.1 – 5.2.3.3).
De: 4. Update risk information for routes s ∈ Sfixed∪Sreopt, based on the changing condition
of gullies;
De: 5. If any route s ∈ Sfixed∪Sreopt is scheduled in x, ls = 30(days), otherwise ls = ls−W

LLH1 i-cross-exchange. For any two scheduled routes r1 and r2, apply i-cross-exchange

(Section 2.1.2.2). If any resulting route visits one point more than once, the points adjacent

to longer edges are removed. Moves are examined for each pair of routes in a nested loop, the

first yielding an improvement being implemented. (1 ≤ i ≤ 5).

LLH2 i-worst point insertion (5 ≤ i ≤ 20). This LLH improves the next |W | days’ scheduled

routes by finding the i highest risk points not appearing in the current schedule solution x.

These i points are then inserted into the |W | days schedule using a cheapest insertion heuristic

(Section 2.1.2.1) with a relaxed time limit. If any target route in |W | now exceeds the Tmax

limitation, we repeatedly remove the best-condition point from that route until it becomes

feasible.

The two LLHs above keep a copy of the original routes and generate new routes through

operations. New routes are stored in the re-optimised routes set Sreopt. Though these modified

routes may not generate improvements for the current iteration or the current short planning

horizon, they normally contain relatively high risk gully-pot-clusters in recent time. Hence,

they are still likely to be picked up using schedule related moves later or contribute to the

near-future plan.

H Schedule related moves:

LLH3 n-replace schedule (1 ≤ n ≤ |W |). Replace the last n days’ schedule with n other

routes from the candidate set Sall, that are not included in the current solution, and whose

tabu tenures ls equals zero and has not been tested during the search (us = false). We sort
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Algorithm 5.2.2 Bebo hyperheuristic

Define:
1: x is the current solution;
1: LLHi is a low level heuristic;
1: 4(x, LLHi) returns the new value of the objective function 3.1 from applying LLHi to
current solution x;
1: tabui is the tabu tenure of LLHi

1: backoffmin = 5 is the minimum backoff value
1: backoffi is the backoff value of LLHi, where backoffi ≥ backoffmin
for all i do

set backoffi = backoffmin
tabui = 0 # in our implementation, we allow all LLHs to try at least once at the beginning

end for
while ∃i that tabui = 0 do
bestvalue = x.value
for all LLHi do

if tabui = 0 then
if 4(x, LLHi) < x.value then
backoffi = backoffmin
if 4(x, LLHi) < bestvalue then
bestvalue = 4(x, LLHi)
besti = i

end if
else
backoffi = backoffi ∗ 2
choose tabui randomly from {0, 1, ..., backoffi}

end if
else
tabui = tabui − 1

end if
end for
if bestvalue < x.value then
x⇐ apply(x, LLHbesti)

end if
end while
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the candidate set Sall to check the higher risk routes first as these moves are more likely to

produce improvements. Algorithm 5.2.3 presents the pseudo code of LLH3.

Algorithm 5.2.3 n-replace heuristic

Sall is a list of candidates routes sorted by risk in descending order
for each day i in the last n days’ schedule do

for each route s in Sall where us = false && ls = 0 && s /∈ x do
x′ = replace the route scheduled in day i with s;
if x′.value < x.value then
x = x′

us = true
break

end if
end for

end for
return x

LLH4 n-replace schedule random (1 ≤ n ≤ |W | − 1). Same as LLH3, except that we choose

the n day’s schedule to replace randomly, instead of the last n day’s schedule.

LLH5 switch two days’ schedule (see Algorithm 5.2.4). First improvement scheme is applied.

Algorithm 5.2.4 switch heuristic

for i = 0; i < x.length; i = i+ 1 do
for j = i+ 1; j < x.length; j = j + 1 do
x′ = switch the ith and jth days’ schedule;
if x′.value < x.value then

return x′

end if
end for

end for
return x

Algorithm 5.2.5 Pop up (entry, stop)

Define: entry: the route to pop up
Define stop: the target day;
for i = entry; i > stop; i = i− 1 do

for j = i− 1; j ≥ stop; j = j − 1 do
x′ = pop up ith day’s schedule to jth day;
if x′.value < x.value then

return x′

end if
end for

end for
return x
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LLH6 Pop up (Algorithm 5.2.5). Pop up ith day’s schedule to a target position j. For

example, one neighbour of solution 1,2,3,4 can be 1,4,2,3 by popping up 4 to the second

position. In Algorithm 5.2.5, entry=|W | and stop=1 are used in following experiments.

In summary, if we need to produce a |W | = 7 days schedule, in total 36 LLH will be called.

The LLHs set contains both route structure adaptation and schedule modification according

to risk estimation.

Our preliminary experiments show that all the LLHs contribute to the final solution quality.

Among them, LLH2 makes the most improvements. Also, LLH2 helps the solver continuously

add new elements to the candidate routes set. Our LLHs do not allow any individual route to

visit one point more than once. However there is no rule to eliminate a solution that contains

a gully-pot-cluster more than once during the period |W |: our experiments suggest that such

a sub-optimal solution is easy for the algorithm to improve using LLH2, LLH3, LLH4, which

is thus rarely seen in practice. If a resulting solution suggests to visit a point more than once

within |W | days, the heuristic is opportunistically visiting a recently cleaned gully that lies

close to the current route.

5.2.3.3 Improve current solution by partial rebuilding

At the end of the BEBO improvement stage, a local optimum solution x is returned and

a reinitialisation process is applied to escape the local optimum, by partly destroying and

rebuilding x. Then the BEBO improvement and reinitialization repeats for a given CPU time.

The global best solution is remembered.

Destroy: For a |W | days schedule solution, we randomly remove y days of the schedule,

where y ≤ |W |/2;

Rebuild: Here, we build y new routes that can replace the y removed schedules. First, from

the optimised routes information stored in the fixed memory, we know the average number

of points n̄ included in a route. We then select nworst number of points with the highest risk

under current environment and nrandom random points that have not been visited in the |W |−y

unchanged scheduled routes, where nrandom = nworst = n̄ ∗ y/2. Next, the entire process in

Section 5.2.2.1 is applied to the selected points, resulting in z distance-optimised routes, which

are stored in the the re-optimised routes set Sreopt. Finally, y out of the z routes are randomly

assigned to replace the removed schedules.
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5.3 Risk driven analysis of predictive scheduling strategy

In this section, we first introduce our simulation settings. Then, we determine the rolling plan-

ning horizon by experimenting with its effect on risk management under different environmental

conditions. Finally, we test the predictive scheduling strategy and compare it with the current

manual approach and a few other common scheduling policies. We aim to understand how

different maintenance policies affect the surface water flooding risk due to blocked gully-pots

in the long term. All simulations were implemented in C# and executed on a cluster composed

of 8 Windows computers with 8 core, Intel Xeon E3-1230 CPU, and 16GB RAM.

5.3.1 Data & Parameters

5.3.1.1 Simulation settings

Gully-pot information comprises location, surrounding properties, nearby trees and historical

maintenance actions from Blackpool local council, a client of Gaist Solutions Ltd. Details of

simulation assumptions and environment settings are the same as introduced in Section 4.3.

We use the inaccessibility figure of 8.3% to simulate the current parking issues, which implies

not all gullies can be cleaned during preventative maintenance. We set the random broken

event rate at pb = 0.00005 that simulates the dynamic environment from Chapter 4.

5.3.1.2 Search parameter settings

The BEBO heuristic described in Section 5.2.3.2 is parameter-free, since all LLHs are given

and it always chooses the best LLH at each decision point.

The termination criterion of the entire search process, composed of BEBO and reinitialisa-

tion, is controlled by a pre-set CPU time. Many heuristic search strategies find good solutions

in the very early stages, but to find more improvements becomes harder and harder. To avoid

either too early termination or unnecessary CPU consumption, we test the effects of limited

computation time for various sizes of planning horizon, |W |. According to our experiments,

about 0.002, 15, 68, 319 and 1189 minutes are required respectively for planning horizons

|W | = {1, 5, 7, 10, 14} to achieve results that are within 2% of the best found solutions in

preliminary experiments run over 48 hours of CPU times (see Figure 5.3). These CPU time

limitations are used in the subsequent experiments.

Considering the size m of the re-optimised routes set Sreopt, large values of m result in a

more diverse set of routes, which may lead to a better solution. However, if m is too large, the

increased CPU time (for schedule-related LLHs (Section 5.2.3.2) to find their local optima) does

not yield better solutions in the time available. The route diversity due to larger m contains

too many old updates during the search, which increases the searching complexity. If m is too
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Figure 5.3: Effects of limiting computation time for different planning horizons

small, route-related moves repeatedly generate the same or very similar routes. For our case,

m = 25% of the initial fixed routes set size is found to give the best balance between these two

effects in preliminary experiments.

5.3.2 Impact of planning horizon |W | on risk management in different envi-

ronments

As we have seen in Chapter 4, gully-pot lifetimes are affected by seasonal factors, and peoples’

reporting behaviour is different at different times of year. A short planning horizon may result

in many reactive actions, and require more frequent information updates, whereas a longer

planning horizon is better at balancing preventative and corrective maintenance. However,

when |W | is too large, it leads to a plan based on insufficiently up-to-date information.

This section explores the impact of the planning horizon |W | on the maintenance perfor-

mance in four seasons with the gully-pot system in either a normal or recovery scenario (Section

4.6). The parameter settings of the two scenarios are shown in Table 5.1. (Planning horizons

|W | = {1, 5, 7, 10} are tested).

Figure 5.4 shows the average daily surface water flooding risk caused by clogged gullies in

Blackpool by using different planning horizons under different scenarios. We can be relatively

sure that there is a genuine difference in risk, when both the mean values and the 95% confidence

intervals differ. In the normal scenarios (Figure 5.4(a)), |W | = 5 and |W | = 7 perform better

than other settings during spring and summer. Over autumn and winter, when the number of

blocked gully-pots and calls significantly increases, |W | = 1 produces the best schedules, as it

updates system and environment information most frequently. |W | = 10 performs badly in all

seasons, due to lack of up-to-date information.
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Table 5.1: “since last maintenance” and “initial broken gullies” set the system’s initial state: for all

gully-pots, the days since their last service are evenly distributed in θ years. We randomly assign a

percentage of gully-pots to be in the broken state. In the simulation, pb = 0.00005

State Definition
Since last

maintenance θ
Initial broken

gullies

normal

Based on the real-world situation,
running simulation of maintenance
actions for a long period until the overall
system risk becomes stable; used as the
initial state for all normal scenarios

1.5 0.7%

recovery
Start with very poor gully-pot conditions,
and entire system in a high risk state

3 2%

In the recovery scenarios (Figure 5.4(b)), the overall risk is about 2 to 3 times greater

than when the system is in the corresponding normal state. In particular, if there is a lack

of maintenance in autumn, this may lead to serious consequences. Again, |W | = 1 always

produces the best schedules in the recovery state. This is because there is a significant number

of emerging situations every day. Updating the system and environment information every day

brings considerable advantages. In the recovery scenario, it is difficult to identify a single best

value among |W | = {5, 7, 10}; it is hard to balance the preventative and reactive actions by

adjusting planning horizons, when recovering from a disaster.

(a) Normal

(b) Recovery

Figure 5.4: Impact of planing horizon on maintenance performance in different scenarios. Error
bars show 95% confidence interval on each mean.

Table 5.2 presents scheduling performance in terms of corrective actions. As we described

in Section 5.2, our solution does not impose hard constraints on the time taken to respond
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to residents’ calls. Instead, the hyperheuristics automatically choose maintenance actions that

minimise the entire system’s risk. On average, all tested planning horizons react to emerging

events in less than 7 days in a normal scenario. In the recovery scenario, |W | = 1 gives the

fastest reaction to these emerging problem gully-pots. However, even with |W | = 1 there

are big challenges in the autumn period, when the average delay between identification and

correction of a problematic gully-pot rise to 34 days.

Table 5.2: The effect of planning horizon on corrective maintenance performance. Emergings
per day: the average number of identified problematic gully-pots.

Spring Summer Autumn Winter
Average
response

Emergings
per day

Average
response

Emergings
per day

Average
response

Emergings
per day

Average
response

Emergings
per day

Normal
1 1.56 0.53 1.68 0.64 2.55 5.18 3.00 2.54
5 3.82 0.67 3.97 0.33 3.88 4.85 4.24 2.37
7 4.58 0.57 4.28 0.51 4.36 4.87 4.97 2.51
10 5.98 0.63 6.23 0.43 4.58 4.80 3.71 2.32

Recover
1 14.74 25.02 14.22 24.27 34.41 65.22 16.59 28.29
5 18.26 24.73 18.82 23.22 36.80 64.52 25.04 29.33
7 20.07 23.41 22.46 23.01 36.40 65.06 22.15 28.38
10 17.63 23.26 19.86 23.07 36.12 63.44 19.32 27.69

5.3.3 Effect of maintenance policies on risk in continuous time

Our essential aim is to reduce the surface water flooding risk for the entire city in continuous

time. In the previous section, we seek the best-performing rolling planning horizon. |W | = 1

requires the shortest computation time and produces the best schedule when the system is under

pressure, but collecting the system and environment information every day is not feasible in

real-world team management. When the gully-pot system is in its normal scenario, |W | = 7

shows the best ability to cope with seasonal changes. After consultation with Gaist Solutions

Ltd., |W | = 7 is applied in the long period maintenance policy testing, since this balances team

management requirements and scheduling performance.

In order to test the impact of how we manage preventative and corrective maintenance, we

designed six policies that combine preventative and corrective actions with different rules. In

these experiments, all scheduled routes are optimised on distance.

• Policy0: Pure reactive policy. Every week, we produce a |W | = 7 days schedule for

reported problematic gully-pots only, according to up-to-date information. Priority is

given to the emerging events with highest risk. After finishing these planned tasks, we

take a rest until the plan for the next week is produced.

• Policy01: Alternative pure reactive policy. Every day, we produce a |W | = 7 days
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schedule for reported problematic gully-pots only, according to up-to-date information.

Only the first day schedule is executed, then we replan for the following week.

• Policy1: Pure reactive policy0 in autumn, PSS (see Section 5.2) with planning horizon

|W | = 7 in other seasons.

• Policy2: PSS, introduced in Section 5.2, for all seasons.

• Policy3: Fixed manual schedule. All preventative routes are generated at the beginning of

a year, giving the routes stored in fixed memory, see Fig. 5.1. These routes are arranged

in descending order of risk measured at the initial time. Every week, we use the first two

days to deal with emerging events and use the remaining 5 days to deploy preventative

actions, in order. During corrective time, we give priority to routes with the highest risk,∑
i∈s riPi(today).

• Policy4: Dynamic manual schedule. Similar to policy 3, but priority is given to corrective

maintenance. This is the manual approach we tested in Chapter 4.

We evaluate the performance of each policy from three aspects: overall risk management,

agility to emerging events, and running cost. These six policies are firstly tested in a normal

scenario and then we test their recovery speeds in a variety of bad initial situations. The

daily risk is evaluated from the actual blocked and broken gully-pots with their associated risk

impact.

5.3.3.1 Performance in the normal scenario

We simulate each policy on the Blackpool gully-pot system over four years, with corresponding

seasonal settings and residents’ reporting behaviour. Five random runs are carried out for each

policy. We evaluate the average daily risk based on these experiments.

Risk management Figure 5.5 shows the average daily risk when applying the different

maintenance policies in a normal scenario. Pure reactive policy 0 produces the highest risk

all the time, and is about three times worse than any preventative and corrective combined

policy. Even if we reschedule every day (policy 01), pure reactive maintenance still preforms

significantly worse than other policies. The performance of pure reactive policies in autumn

is not significantly worse than their performance in other seasons. However, their data shows

very big deviations in autumn, which suggests large fluctuations happen. In the daily perfor-

mance tracking, we find serious risk increases at the beginning of autumn, due to the lack of

maintenance in other seasons and environmental factors. Also, in autumn, residents’ reporting

behaviour helps to prompt a large number of reactive actions.
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Figure 5.5: Policy performance in the normal scenario. Error bars show one standard deviation
of daily risks for each season.

From policy 1 to 4, the PSS (policy 2) achieves the best overall performance. It is signifi-

cantly better than manual scheduling in summer, autumn and winter. In spring, there is not

much difference in applying any of the preventative plus corrective policies. To track the daily

risk change over time, we apply these four policies in exactly the same environment simulation

for four years. As illustrated in Figure 5.6, policy 4 is used as a base line and the other three

policies are compared against it. When applying policy 4 in a normal scenario, the estimated

surface flooding risk is £18,082 on average per day. By just rearranging the preventative and

corrective tasks, policy 3 achieves an average risk decrease of about 12% per day, but always

giving priority to emerging events may lead to poor working efficiency. The best result is for

policy 2, which produces schedules that out perform the base line (policy 4) in 91% of days

over 4 years; on average, policy 2 decreases risk by about 17% per day.

Agility Table 5.3 presents the average number of days to respond to calls. All policies except

policy 3 are able to react to emerging calls in less than 5 days on average. Policy 3 uses a very

straightforward scheduling rule, which may be good for team management, but shows serious

latency for emerging requests. When only applying reactive actions (policy 0 and 01), on

average about 3 times more residents’ calls are received per day. This also exposes one reason

for the poor performance of these policies in risk management (Fig. 5.5): lack of preventative

maintenance leads to more corrective maintenance.

Working efficiency analysis To discover how the predictive schedule strategy (policy 2)

out performs other policies, we focus on time usage and work efficiency. Figure 5.7 illustrates

the percentage of time spent in different types of activity. First, we can see that the reactive
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(a) PolicyID=4 (b) Policy 1 VS. Policy 4

(c) Policy 2 VS. Policy 4 (d) Policy 3 VS. Policy 4

Figure 5.6: Daily risk change over 4 years in the normal scenario using 4 types of preventative
plus corrective maintenance policy.

policy 0 shows high dependence on resident reports, resulting in working time of only about

45% percent during spring, summer and winter. Policy 3 follows a very straightforward rule,

to do maintenance throughout the year. The fixed rule lacks the ability to adapt to seasonal

changes. As Figure 5.5 shows, policy 3 has the largest fluctuations in all seasons compared to

other preventative and corrective combined policies.

The time usage distributions of policy 2 and the manual schedule policy 4 show very similar

patterns in Figure 5.7. Table 5.4 compares the daily working efficiency of policy 2 and 4. On

average, policy 2 manages to service 10 more gully-pots every day within the same working time

constraints. One reason is because policy 2 treats the resident calls and normal preventative

Table 5.3: Agility analysis of different maintenance policies

Average
response

Emergings
per day

Policy 0 4.88 11.14
Policy 01 2.24 10.88
Policy 1 3.93 4.31
Policy 2 4.34 3.30
Policy 3 20.82 2.83
Policy 4 4.67 3.19

82



Chapter 5. Optimisation of a gully-pot system maintenance scheduling 83

Figure 5.7: How do different policies use their time to do maintenance?

maintenance together, so more efficient routes can be found and emerging blockages can be

solved at the same time. Compared to the fixed preventative routes managed by policy 4, policy

2 always attempts to insert more high risk gully-pots into the current scheduled routes (Section

5.2.3.2, LLH2), which results in automatically rescheduling of any missed gullies from previous

preventative maintenance. Figure 5.8 illustrates further evidence that policy 2 produces better

schedules. Comparing Figure 3.2 (the gully-pot risk impact map of Blackpool) and Figure

5.8 (the service frequency map under policies 2 & 4), we find policy 2 successfully targets the

geographical areas which have been evaluated as highest risk. In contrast, policy 4 schedules

the service times more evenly, which results in too many visits to low criticality areas.

Table 5.4: Average number of gully-pots serviced per day by policy 2 and 4

Spring Summer Autumn Winter

Policy2 81.90 82.09 83.41 81.42
Policy4 71.03 71.45 74.60 72.28

Cost using Blackpool’s current operational costs (Table 5.5), we can estimate the annual

cost of each maintenance policy. This allows us to explore the cost of extra effort required for

preventative maintenance.

Table 5.5: Operation costs of gully-pot maintenance

Cost Unit

Travelling £0.28 per km
Vehicle maintenance £20,000 per year
Human resource £56,000 per year
Preventative £3.25 per gully
Calls response £19.00 per gully
Broken £225.00 per gully

The cost estimates for the different policies is shown in Figure 5.9. All of the preventative
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(a) Policy 2 (b) Policy 4

Figure 5.8: Geographic distribution of service frequency over a 4-year simulation

and corrective combined policies show expenditure of £280,000 to £300,000 annually. This

means that, compared to the pure reactive policy 0, an extra 10% of expenditure could reduce

potential risk by as much as a factor of 3, over time (Figure 5.5).

Comparing the predictive policy 2 to the current manual policy 4, about £8,000 more

would need to be spent each year, due to the additional preventative work. However, these

extra preventative actions would result in about £3,000 of risk reduction every day, or over £1

million per year.

Due to data limitations, our current simulation of gully-pot breakage behaviour uses a fixed

probability, giving roughly 500 broken gully-pots a year, generated at random times. This sim-

plistic breakage regime, which is the same under each policy, results in all policies presenting

similar effort to tackle broken gully-pots. In practice, policies with regular preventative main-

tenance would slow deterioration, and might decrease the chance of breakage. We would expect

a more realistic model of breakage probability to reduce the apparent cost of policies 1 to 4 to

less than the cost of policies 0 and 01.

In conclusion, preventative maintenance could significantly ameliorate the surface water

flooding risk caused by blocked gully-pots at reasonable additional cost; these costs are more

than justified by service quality improvement.

84



Chapter 5. Optimisation of a gully-pot system maintenance scheduling 85

Figure 5.9: Annual operation cost and surface water flooding risk caused by clogged gully-pots
for the different policies

5.3.3.2 Performance in recovery scenario

Here, we test the robustness of each policy by starting from a very bad initial condition. We

explore how long it takes for each maintenance policy to take the system from a poor initial state

to a normal scenario. The average risk of applying each policy in a normal scenario (Section

5.3.3.1) is used as the policy’s base line. As presented in Table 5.6, four recovery scenarios are

tested. For each scenario, we report the average of 10 runs of a two-year simulation.

Table 5.6: “since last maintenance” and “initial broken gullies” set the system’s initial state: for all

gully-pots, the days since their last service are evenly distributed in θ years. We randomly assign a

percentage of gully-pots to be in the broken state. In the simulation, pb = 0.00005. (Scenario 2 and 3

have the same experiment settings as recover-1 and 2 shown in Table 4.1)

.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Since last maintenance θ 3 years 1.5 years 3 years 4 years
Initial broken gully-pots 0.7% 2% 2% 3%

Recovery speed From Figure 5.10, we can see that the initial situation in scenario 2 is

very close to the normal state of reactive policy 0. Comparing scenario 1 to scenario 2, the

overall shortage of preventative maintenance (scenario 1) is more difficult to recover from than

a small amount of very broken gully-pots in the system (scenario 2). On average, policies 1

to 4 need about 7 months to restore the system to its normal state in scenario 2 (see Figure

5.10(b)), whilst they need about 19 months to recover from initial situation in scenario 1 (see

Figure 5.10(a)). Comparing policies 1 to 4 in scenario 1 and 3, we can see that policies 1 and

2 perform better than both of the manual policies 3 and 4 in terms of percentage risk increase.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 5.10: Recovery speed using different policies. The percentage of risk is calculated as
(r − r̃)/r̃ ∗ 100%, where r represents the daily surface flooding risk and r̃ is the average daily
risk of applying the corresponding policy in its normal scenario (see Section 5.3.3.1).

The robustness of both manual policies is considerably worse than that of policies 1 and 2,

especially during the autumn period in the first year. Comparing the performance of policies

3 and 4, the fixed schedule strategy (policy 3) is a lot worse than the more flexible strategy

(policy 4).

Activity changes during recovery stage To recover from different situations, policies 1

to 4 utilize their time in different ways. Figure 5.11 presents the time usage of each policy

during the first year of the recovery stage. Policy 3 has fixed amount of preventative time,

about 71%, through all scenarios. However, it still adjusts the remaining 29% of corrective

action time to face different types of emerging events (including calls and broken gully-pots).

Comparing policies 3 and 4 in scenario 1, 3 and 4, the relatively more flexible policy 4 almost

stops its preventative actions except in winter. This flexibility helps policy 4 to recover the

system faster in the early stage and results in less total damage during the recovery stage.

Interestingly, both policies 3 and 4 take similar amounts of total time to recover the entire

system in all scenarios: the rate of recovery for policy 4 slows over time. The predictive policy

2 balances its preventative and corrective time, and is between policies 3 and 4. The balanced

strategy results in a steady recovery process; even though it only does corrective work during

autumn period (like policy 1) and has some resting days, the overall performance is not affected.
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Figure 5.11: How do different policies use their time to recover from very bad initial conditions?

5.3.4 What-if questions

All the experiments introduced in the previous sections are based on the real-world scenarios.

In this section, we test three hypotheses, which uncover potential weaknesses of our PSS (policy

2), and suggest future investment directions to improve maintenance performance.

5.3.4.1 What if we do not have information on risk impact?

Section 3.3.1 describes the method to collect and estimate each gully-pot’s risk impact, which

estimates the consequences of surface water flooding due to clogged gully-pots. However, not

every local council records the information. Figure 5.12 illustrates the performance of policy 2

operating with and without risk impact information (labelled policy 2∗). Policy 2∗ results in

a much higher risk than policy 2 (Figure 5.8(a)); in fact, the lack of risk impact data means

that policy 2 becomes similar to the policy 4: all gully-pots are serviced relatively evenly.

5.3.4.2 What if all gullies are accessible – the impact of parking issues?

In Chapter 4, we investigated the effect of parked vehicles on the manual scheduling strategy

(policy 4). Here, we explore the impact of inaccessible gully-pots on policy 2 by running

simulations with zero inaccessible gully-pots (labelled as policy2∗∗). From Figure 5.12, there

is no significant difference between policy 2 and policy 2∗∗. By using the predictive scheduling

strategy, policy 2 is able to cope with the current parking issues. This is because it flexibly

re-schedules preventative maintenance of inaccessible gully-pots.
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5.3.4.3 What if we could do condition-based maintenance (CBM)?

Improving low-cost sensor techniques make it potentially feasible to continuously monitor gully-

pot condition. This would allow our schedule strategies to be combined with CBM. Chapter

4 discusses the advantages of sensoring technique tested on the current manual scheduling

strategy (policy 4). Here, we would like to know whether combining a predictive scheduling

strategy with the sensoring technique will bring further improvement. In the simulation, we test

a scenario in which all problematic gully-pots in the system are known immediately (labelled

as policy 2∗∗∗). From the results in Figure 5.12, comparing policy 2∗∗∗ and policy 4∗∗∗, we can

see a 50% further risk reduction.

Figure 5.12: The average risk of applying policy 2 and 4 in stable state with 4 assumptions.
Error bars show 95% confidence intervals on each mean. Policy 2 is running in the real-world
scenario; policy2∗ assumes we do not have risk impact information; policy2∗∗ assumes there
are no parking issues during preventative maintenance; policy2∗∗∗ and policy4∗∗∗ assume we
can know any problematic gully-pot immediately.

5.4 Conclusion

This chapter has solved the gully-pot maintenance in the city of Blackpool, using a PSS. The

general aim is to reduce the overall surface water flooding risk caused by clogged gully-pots

in continuous time. The PSS runs on a short period rolling planning horizon that is able to

automate schedule adaptation to any environment changes.

Due to the dynamic and large-scale features of our problem, we introduce a data structure

(see Figure 5.1) for dealing with different types of actions. In addition, our objective function is

highly sensitive to the gully-pots’ changing failure rates. We present a hyperheuristic framework

embedded with a group of route and schedule-related LLHs. This structure allows dynamic

balancing between route and schedule optimization.

By adjusting different types of actions in different scenarios, our PSS successfully out-

performs the current real-world gully-pot maintenance approach, which is widely used in the

UK, in terms of overall risk management, agility to react to emerging events, and robustness

to poor initial states.
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This predictive strategy relies significantly on the understanding of asset failure behaviour.

Our estimations are based on working with experts in the field to provide the best (limited)

data available. We are also working with Gaist solutions Ltd. on a new surveying methodology

which will further improve data in the future, but such data will not be available for some time

to come.

In Part I, we have fully investigated the large scale gully-pot system maintenance problem

from perspectives including modelling (Chapter 3), simulation based issue detection in manual

scheduling (Chapter 4), and the maintenance scheduling policy improvement (Chapter 5). In

further work we will investigate other investment possibilities. It is worth noting that the

work that Gaist Solution Ltd. has done on road maintenance decision support has resulted in

investment worth hundreds of millions of pounds across several UK local councils.
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Heuristic search methods with

respect to PVRP and GDMP
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Whilst part I of the thesis directly addresses issues of interest to Gaist Solutions Ltd. and

its client local authorities, in this part, we focus more on the solution approaches that aim to

effectively solve large scale combinatoric optimisation problems. Firstly, we review the funda-

mental concept of local search methods that are the main components of our search algorithms’

design (Chapter 6). We investigate the search from two aspects, including comparison of var-

ious high level management strategies over a set of local search operators (Chapter 7), and

statistically guiding the local search process (Chapter 8). These heuristic based approaches are

tested on both benchmark periodical vehicle routing problems and the real-world geographical

distributed maintenance problems.
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CHAPTER 6

Background knowledge

This chapter reviews the fundamental concept of local search methods and briefly intro-

duces the concept of hyperheuristics. It clarifies a few terminologies, which are widely used

many of them are ambiguous in the literature. This chapter builds the basis of the design of

hyperheuristic (Chapter 7) and multi-arm-bandit searches (Chapter 8).

6.1 Local Search (neighbourhood search)

Local search (LS) and the concept of neighbourhoods are the basis of most heuristic search

techniques. LS walks in a candidate solution space, starting from its current position and

moving to a neighbour that is acceptable according to the fitness function and the pre-defined

acceptance rules. An LS move takes the current solution as an input and modifies it by slightly

changing part structure of the current solution. At all times, the LS heuristic has a current

solution, and it iteratively applies moves until it reaches a predefined stopping criteria.

LS-based methods use local information to guide the move directions in the solution space.

The guiding rules are often based on experience or intuition and can be either predefined or

adapted in course of the search. Because of limited information, any LS-based method is not

able to predict the exact landscape of the distant search scape.

In this chapter, we introduce local search formally. The presentation is a modification of

Funke et al. (2005) study.

In a given combinatorial optimisation problem instance, we use X to represent the solution

space that includes all feasible solutions of the problem instance. A mapping f : X −→ Q is

a fitness function that measures the quality of a candidate solution x ∈ X. X is finite, but

could also be a very large set. We assume that the given problem instance is a minimisation

problem, and then the aim is to find a solution x∗ satisfying f(x∗) ≤ f(x), ∀x ∈ X (Funke

et al. (2005)).

We define a move as an operation on a solution x, which can transform it into a different

solution x′. A move is the elementary concept of all local search-based methods. Normally, an

LS uses a set of moves M , which modify different part(s) of a solution or the same part of a

solution differently. A solution x′ is defined as a neighbour of x, if x′ can be transformed from

92



Chapter 6. Background knowledge 93

x by operating one move m ∈ M on x. The set of all solutions that can be reached from the

current solution x using one move from the given set of moves define the neighbourhood of the

current solution, which is denoted as N(x). If, for all x′ ∈ N(x), f(x′) ≤ f(x), then we call

the solution x a local optimum (Funke et al. (2005)).

A general LS method is described in Algorithm 6.1.1. This method looks for at least one

improving neighbour solution x′ ∈ N(x) at each iteration.

Algorithm 6.1.1 Generic Local Search based on Funke et al. (2005)

1: Initialisation: construct a feasible solution x ∈ X
2: Repeat
3: Search for an improving neighbour x′ ∈ N(x), where f(x′) < f(x)
4: if the search found an improving neighbour x′ ∈ N(x) then
5: x = x′

6: end if
7: Until no more improvements are found

We note that line 3 of Algorithm 6.1.1 does not determine the search strategy within

a neighbourhood N(x). A detailed discussion of this is presented in the next section. To

accept an improvement (lines 4-5), the two most common strategies are either to perform first

improvement (FI) or best improvement (BI) where the entire neighbourhood is explored to

identify the best solution. Of course, you can also apply the n−best search that chooses the

best move once you have found n improving neighbours. Intuitively, we can think that when

not using BI, the order of examining potential moves becomes very important, especially when

a solution has large neighbourhoods.

Algorithm 6.1.1 could also be called an improvement heuristic (Laporte et al. (2000)), a

local search process that only applies moves that lead to an improved solution. This process

introduces a simple but efficient search strategy.

6.1.1 Search within a neighbourhood

A given set of moves defines the neighbourhood structure of the current solution. Finding an

improving neighbour quickly becomes the next step. We summarise the neighbourhood search

strategies in the four following classes: Solution Structure Oriented Search (SSOS), Feature

Sequential Search (FSS), Sequential Search (SS), and Neighbourhood Partition Search (NPS).

SSOS The natural approach for developing a search algorithm is to in turn examine parts of

the solution. For example, vehicle routing problems (VRPs) normally code candidate solutions

as sequences of vertices (referring to the customers). SSOS identifies k-changing elements (e.g.

2 edges of a route) of a move (e.g. 2-opt) using k-nested loops following the current solution

structure. When more than one move is designed, a heuristic is employed to search through
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the neighbourhood by examining every move for each vertex/edge (or identified k elements),

either in a pre-defined order or a random order. Applications can be found in Gulczynski et al.

(2011) and Vidal et al. (2012). FI returns a solution when an improving neighbour is found.

FSS Instead of guiding the search by examining the moves following the current solution

structure, FSS identifies k-changing elements of a move according to the cost of the elements.

FSS usually considers a candidate list sorted by features (e.g. length of the edges in a 2-

opt move). One example is an edge-modification move, which examines the longest edges.

FSS aims to give priority to the areas of a neighbourhood, which are perceived as promising.

However, the trade-off to potentially decrease the number of examined neighbours is the extra

effort involved in feature sorting. Early applications of FSS include the travelling salesman

problem (TSP) solving (Bentley (1992)). In recent literature, FSS is rarely seen, especially

when many different moves need to be designed for a rich VRP. In Chapter 8, this search

strategy is embedded in a meta-heuristic framework to solve PVRP and GDMP.

SS Sequential Search is based on a pre-condition that a move of a neighbourhood can be

decomposed into so-called partial moves, which are cost-independent. A decomposition is cost-

independent if the change in the objective function for the complete move is the sum of the gains

of all the partial moves. Then, a complete move can be sequentially formed by determining

good partial moves first. By doing so, it becomes possible to avoid checking many potential

moves. This method was first used by Lin and Kernighan (1973) for solving the TSP. Later

Funke et al. (2005) introduce SS for common CVRP neighbourhoods where experiments show

a significant speeding in the search compared to SSOS.

NPS The idea of dividing a neighbourhood gradually emerges when more and more rich

VRPs are built as models of real-world problems. Variable neighbourhood descent (VND)

(Hansen et al. (2010)), specifically utilises this concept. In many implementations of VND, a

set of neighbourhoods N1, N2, ..., Nk is defined based on the moves operating on the current

solution. For example, we can note N2opt as a neighbourhood that is composed of all solutions

modified from the current solution x using a 2-opt move. To solve a VRP, we then define a set

{N2opt, Nrelocated, ...}, and in turn, VND searches through each neighbourhood at each iteration.

It must be noted that the terminology neighbourhoods in VND and adaptive large neighbour-

hood search (ALNS) (Ropke and Pisinger (2005)) can be considered as sub-neighbourhoods

as defined in LS (Section 6.1), as it divides the neighbourhood of solutions based on moves.

By dividing a neighbourhood, VND indeed introduces a search strategy to determine which

neighbour(s) to examine first within LS.

Thus, a big challenge while designing a good VND algorithm is to decide in what order
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the neighbourhoods should be searched. One way, which is guided by intuition, is to order

them based on the level of complexity of searching a neighbourhood, such that one starts with

the least complex neighbourhoods, and then gradually includes the more expensive moves. A

typical example is as follows: given a set of parametrised k-relocated neighbourhoods, k =

{1, 2, .., n}, a reasonable search order would follow the order of k = 1, 2, ..., n. When it is

difficult to determine the complexity of searching in different neighbourhoods or when an

algorithm introduces more diversity, a random order has never been seen to be a bad idea.

In fact, ALNS specifically applies a roulette wheel selection of neighbourhoods to introduce

randomness to the search.

A more intensive way of dividing neighbourhoods into sub-neighbourhoods is proposed by

the guided fast local search (Voudouris et al. (2010)). The authors present examples from

various problem domains using different measures to create and evaluate sub-neighbourhoods

and effective solutions depend on the derivation of suitably small sub-neighbourhoods. For

example, an N2opt neighbourhood can be further divided based on the vertices that a move

involves. Then a tabu mechanism is used to decide whether to search a sub-neighbourhood or

not.

Reduce search space Having seen various strategies of defining search order through a

neighbourhood, other techniques such as neighbourhood restriction could also affect the effi-

ciency of LS. Neighbourhood restriction approaches reduce the CPU time spent on each iter-

ation of LS. Toth and Vigo (2003) derive granular neighbourhoods from a neighbourhood by

discarding moves that have none of the promising elements, which would be likely to belong

to high-quality solutions. The elements, in this case, are the arcs of a routing problem. An

element is labelled as promising based on characteristics such as arc length, incidence of the

arc to the depot, and whether the arc has been used in one of the best solutions encountered so

far. The granular neighbourhoods approach is embedded in a tabu search (Section 2.1.2.3), and

the algorithm is tested on VRP instances with up to around 500 customers. The experimental

results show that the method is efficient in computational time.

In fact, the SS (above) also decreases the total number of candidate moves to be examined

at each LS iteration by constructing a complete move by sequentially determining good partial

moves. Fast guided local search (above) uses a neighbourhood restriction in which moves are

only evaluated if they belong to an activated sub-neighbourhood.

6.2 From heuristics to hyperheuristics

In Chapter 2, we have reviewed various (meta-)heuristics applied to vehicle-routing problems.

In recent years, a large amount of research has shown that some meta-heuristics perform
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better for some type of problems. In addition, for the same problem, different heuristics or

meta-heuristics perform better for different instances. Furthermore, different (meta-)heuristics

perform better at different stages of a search for the same instance. Consequently, many hybrid

meta-heuristics are springing, aiming to take advantage of the abilities of different (meta-

)heuristics.

A similar concept has been introduced as hyperheuristics and is now a big branch of heuristic

research. In the last 15 years, hyperheuristics have experienced a rapid growth. Successful

applications can be found across a large variety of problem domains, such as timetabling (Bilgin

et al. (2007); Burke et al. (2007a); Bai et al. (2012)), vehicle routing (Pisinger and Ropke (2007);

Garrido and Riff (2010); Misir et al. (2011); Walker et al. (2012)), and space allocation (e.g.

Bai and Kendall (2005)). Summaries of state of the art hyperheuristic techniques can be

found in survey papers by Özcan et al. (2008); Chakhlevitch and Cowling (2008); Burke et al.

(2010b, 2013). In Chapter 5, we successfully applied a tabu-based hyper-heuristic to solve our

large-scale drainage system maintenance problem.

A hyperheuristic is often described as a heuristic that chooses heuristics (Ross et al. (2003)).

In other words, hyperheuristics define a series of rules to choose between several sub-ordinate

heuristics or the so-called Low Level Heuristic (LLH). It schedules the order of LLH to solve

a problem instance at hand. Also, it can be used to analyse what LLH fits best with which

instance.

Some hybrid meta-heuristics can be considered as human designed hyperheuristics. There is

certainly an overlap between these two terminologies. However, most of the implementations of

hybrid meta-heuristics describe rather complicated integrations of different search strategies,

which often specifically benefit a certain problem type. The difference with hyperheuristics

is that the decision making for an LLH selection is totally based on problem-independent

measures such as the change in the quality of a solution. Once implemented, hyperheuristics

can be directly used in another problem domain.

Another noticeable feature of some hyperheuristics is the introduction of machine learning

to an LLH selection,which truly frees design from the requirements of domain experts. Since

the terminology hyperheuristic was first described in the context of solving combinatorial prob-

lems (Cowling et al. (2000)), many interpretations, implementations, and classifications have

emerged in the available literature on this subject matter. As a conclusion, I would define

hyperheuristic as any approach, which attempts to automate the design of heuristic algorithms

for solving difficult computational problems, given some necessary tools (LLHs) are present.
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6.2.1 Low-level heuristics design

Typically, for complex combinatorial optimisation problems, solvers with multiple neighbour-

hood structures are designed. With the large quantity of hyper-heuristic applications in various

problem domains, the design of an LLH set is varied as well. LLHs directly affect the search

strategy through neighbourhoods. We summarise three common designs of LLH, which brings

the first insight to develop our hyper-heuristics and local search algorithms in the following

chapters.

The first group of algorithms use FI, BI, or even LS heuristics as LLHs. The LLHs need to

further define the search sequence within a selected neighbourhood (e.g., random, lexicographic,

etc.).

The second group of algorithms typically use a random move from a selected neighbourhood

structure. The best-studied example typically uses adaptive operator selection (AOS) (Fialho

et al. (2010b)) as part of an evolutionary algorithm. In recent years, AOS has also been applied

in hyper-heuristic approaches (Soria-Alcaraz et al. (2014); Sabar et al. (2014)). Comparing

these algorithms with the first group, the uncontrolled use of LLHs (random moves rather than

improvement heuristics) may result in unproductive revisiting of the same move and eventually

lead to an inefficient search. In these situations, the intelligent LLH-management mechanism

in hyper-heuristic is rather critical to the success of the entire algorithm.

The third approach is employed in the well-known adaptive large neighbourhood search

(Ropke and Pisinger (2005)). Here, the LLHs are not specified in advance and are instead

created programmatically from a known set of destroy and construct methods. The system

learns which combinations work effectively and focuses the search on these.

6.3 Summary

In this chapter, we have reviewed the basic concepts of local search and the common terminolo-

gies in literature. Interesting questions arise from both search strategy within a neighbourhood

(low-level) and management strategy over a set of LLH (high-level). The following two chapters

specifically discuss these two aspects of heuristic-based approaches. Chapter 7 uses the period-

ical vehicle-routing problem (PVRP) as the primary test to analyse hyperheuristicsproperties.

This is because PVRP is a well-defined and studied problem, which makes the algorithm per-

formance comparison and behaviour analysis more robust. Chapter 8 introduces a learning

mechanism into the local search process. Five problem instances of various sizes from the

drainage-maintenance-scheduling problem and the PVRP benchmarks are tested.
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CHAPTER 7

Hyperheuristics and local search operators for PVRP

Meta-heuristics and hybrid heuristic approaches have been successfully applied to the pe-

riodic vehicle routing problem (PVRP). However, to be competitive, these methods require

careful design of PVRP-specific search strategies. By contrast, hyperheuristics use the perfor-

mance of low-level heuristics (LLHs) to automatically select and tailor search strategies. In

Chapter 6, we briefly introduced the concept and background knowledge of hyperheuristics.

In this chapter, we provide a comprehensive analysis of several hyperheuristics and test them

on a number of PVRP instances from the benchmarks and the real world, each with its own

different characteristics. The aim is to understand the impact of different mechanisms, which

hyperheuristics apply in their performance. We would also like to justify the hyperheuristic

approaches that automatically manage LLHs, compared to the problem-specific heuristics de-

signed for the PVRP. Finally, we use hyperheuristics as a tool to study the strengths and the

weaknesses of LLHs designed for PVRPs. The content in this chapter has also been published

in Chen et al. (2016d).

7.1 Introduction

The PVRP is the closest classical VRP model to our geographically distributed asset main-

tenance problem (Chapter 3). From simple heuristic approaches developed from the 1970s to

the early 1990s (Beltrami and Bodin (1974); Russell and Igo (1979); Christofides and Beasley

(1984); Tan and Beasley (1984); Russell and Gribbin (1991)), to the hybird meta-heuristic

approaches appearing recently (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012); Cordeau

and Maischberger (2012)), heuristic-based approaches for the standard PVRP have experienced

significant improvements. Section 2.2.1 provides a more comprehensive review of solution ap-

proaches for PVRP.

In comparison to meta-heuristics, a hyperheuristic aims to build more general problem-

independent search algorithms, which are capable of producing sufficiently good and cheap

solutions for different optimisation problems. Theoretically, a hyperheuristic should be able to

not only successfully adapt to any hard computational search problem, but also serve as a good

tool for studying the strengths and the weaknesses of LLHs for a specific type of problem.
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In this study, we present a comprehensive analysis of hyperheuristic approaches to solving

PVRPs. The performance of hyperheuristics can be compared to the published performance

of state-of-the-art meta-heuristics.

The remainder of this chapter is organised as follows: Section 7.2 summarises the general

structure and techniques that are often utilised in hyperheuristics; Section 7.3 introduces a

number of hyperheuristic approaches to solve the PVRP; and Sections 7.5 presents the exper-

imental design and the analyses of the results.

7.2 Choosing the right hyperheuristic structure

Hyperheuristics introduce various techniques to solve hard computational search problems.

However, they all share the common goal of automating the design and adaptation of heuristics.

The essential idea is to introduce artificial intelligence to an algorithm design for solving difficult

problems.

Burke et al. (2010b) classify hyperheuristics from multiple dimensions. Here, we refer

to one of their classifications that considers hyperheuristics as either heuristic generation or

heuristic selection methods. The first group of methods, which come under heuristic generation,

normally apply genetic programming as a hyperheuristic to build new heuristic methods for the

problem (e.g. Keller and Poli (2007); Burke et al. (2007b)). Most implementations generate

a new heuristic using a training set of problem instances, which is thereafter used on unseen

instances of the same problem. In comparison, the second group of methods, which come

under heuristic selection, are the type of techniques that most other researches refer to as

hyperheuristics. In this context, hyperheuristics manage a set of LLHs. At each decision

point, hyperheuristics should be able to decide which LLH is appropriate for usage. In the

remainder of this thesis, we only discuss heuristic selection methods. This is mostly because it

is more appropriate to integrate with existing well-performing local search techniques, which

are specifically designed for routing problems.

The general structure of selection hyperheuristics includes a selection and an acceptance

mechanism. Selection determines which LLH to test at each search stage. The decision making

for LLH selection could be purely random or arbitrary. More intelligently, hyperheuristics

can apply online learning concepts to adapt to decision-making processes with bias towards

better performing LLHs in earlier iterations. An acceptance mechanism decides whether the

current solution is replaced by the new solution. A number of acceptance mechanisms have

been examined within hyperheuristics framework, such as only improving (e.g. Cowling et al.

(2000)), “exponential Monte Carlo with counter” (e.g. Ayob and Kendall (2003)) and “great

deluge” (e.g. Kendall and Mohamad (2004)).

If a hyperheuristic works properly, normally it effectively combines selection-acceptance
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with the given LLH set. Section 6.2.1 introduces a few design concepts of an LLH set. Generally

speaking, an LLH can be designed as a random move from a neighbourhood (e.g. Misir et al.

(2011); Sabar et al. (2014)), as a first improvement (FI) (e.g. Burke et al. (2003)), and as an

embedded FI within a local search (e.g. Meignan et al. (2010)), or even as meta-heuristics. If

an LLH set is only composed of simple moves, then the selection-acceptance mechanism plays a

vital role to guide the search (e.g. Cowling et al. (2000)). Tested on some simple combinatorial

problems, Özcan et al. (2008) concluded that

“the acceptance mechanism significantly affects the performance as compared to

heuristic selection.”

If an LLH set is composed by many independent search strategies (e.g. FI or LS), the algorithm

design normally focuses only on the selection strategy (e.g. Burke et al. (2003)).

Reviewing modern solvers for VRPs, it seems necessary to apply improvement heuristics

to achieve good quality solutions. Therefore, the following study pays more attention to the

management of the set of FI LLHs in the improvement stage of the search.

7.3 Solution Methods

Algorithm 7.3.1 presents an overview of our implementations of hyperheuristics. This algo-

rithm combines a mechanism for iterated local search (Lourenço et al. (2010)) and selection

hyperheuristics. Many hyperheuristic implementations can be summarised by the Algorithm

7.3.1 (e.g. Özcan et al. (2008); Burke et al. (2010a, 2011)), which has been recently named a

HyperILS by Ochoa and Burke (2014).

In lines 4 and 5 of the Algorithm 7.3.1, HyperPerturbation and HyperImprovement normally

manage two different sets of LLHs for exploration and exploitation purposes during the search.

Learning- or non-learning-based LLH-selection strategies can be applied in either or both of the

perturbation and improvement stages. After an LLH is selected in the perturbation stage, we

accept the output result from the chosen LLH as long as it is a feasible solution. The process

of selection-acceptance is repeated until a feasible solution is found. In terms of the acceptance

rule in the improvement stage, we apply only improving (OI) in our algorithm design.

In the following sections, we introduce the techniques, which have been investigated in the

HyperPerturbation and HyperImprovement stages respectively.

7.3.1 LLH Selection in HyperPerturbation

This study investigates two LLH-selection strategies in this stage of the search, including Simple

Random (SR) selection and Random Permutation (RP) (Cowling et al. (2000)). SR chooses

an LLH randomly based on a uniform probability distribution. RP generates a random initial
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Algorithm 7.3.1 HyperILS (from Ochoa and Burke (2014))

1: Define: x0 is the initial solution
2: x∗ = HyperImprovement(x0)
3: while t < tmax do
4: x′ = HyperPerturbation(x∗)
5: x∗

′
= HyperImprovement(x′)

6: if f(x∗
′
) < f(x∗) then

7: x∗ = x∗
′

8: end if
9: end while

permutation of the LLHs and at each step applies the next low-level heuristic in the provided

order.

7.3.2 Search in HyperImprovement

In this section, we introduce the three following groups of hyperheuristics that guide the search

in the HyperImprovement stage: simple hyperheuristics, learning-based hyperheuristics, and

variable neighbourhood decent with learning (VND L). The first two groups are named after

the LLH-selection mechanism. The VND L algorithms combine conventional VND (Hansen

et al. (2010)) with learning-based selection to choose a subset of LLHs at each iteration.

7.3.2.1 Simple hyperheuristics

Simple hyperheuristics apply SR as the LLH-selection strategy. After an LLH is selected,

we either apply it once or apply it repeatedly until no improvement is found, named Simple

Random (SR) and Random Descent (RD) respectively (Cowling et al. (2000)).

7.3.2.2 Learning based hyperheuristics

Learning-based selection strategies consist of credit assignment and selection stages. Credit as-

signment decides how to reward the LLHs, which have just been tested in the current iteration,

and updates the evaluation of any or all candidate LLHs. Many credit assignment strategies

have been discussed, such as extreme value (Soria-Alcaraz et al. (2014), “choice function”

(Cowling et al. (2000)), “tabu mechanism” (Burke et al. (2003)), and so on. According to the

evaluation of each candidate LLH, learning-based hyper heuristics select the favourable LLH(s)

to investigate in the next iteration. Cowling et al. (2000) describe three selection strategies

named straight choice, ranked choice, and roulette choice. In later literature, these selection

strategies are still the most common methods applied. Straight choice selects the LLH, which

is evaluated as the best in the candidate set. Ranked choice adapts an LLH trial set at each

iteration and it can select a fixed proportion of the highest ranking LLHs or LLHs that are not

tabued if a corresponding credit assignment strategy is applied. Each tested LLH outputs a
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modified solution and a favourable output replaces the current one. Roulette choice selects an

LLH in each iteration with a probability, which is proportional to the evaluation value of each

LLH. Figure 7.1 illustrates a high level concept of using online learning to adapt the selection

of LLHs.

Figure 7.1: Overview of LLH management of learning based hyperheuristics

In this study, the three following well-known learning-based hyperheuristics are tested:

binary exponential back off (Remde et al. (2012)), reinforcement learning (Nareyek (2004)) and

choice function (Cowling et al. (2000)). Our implementation applies the ranked choice selection

and the LLH from the trial set that produces the most improved solution is applied. The

algorithms here are not novel and we only summarise the difference in terms of the evaluation-

adaptation mechanism between these methods. A more detailed description can be found in

the papers cited below.

Binary exponential back off (BEBO)

BEBO (Remde et al. (2012)) is a tabu-search-based learning mechanism. A detailed pseudo-

code can be found in Algorithm 5.2.2 (Chapter 5). It dynamically adapts tabu tenures, such

as tabui, to control the usage of each LLH. If an LLH performs poorly in a recent search, it is

disabled for a number of iterations. If this LLH continues to perform poorly when revisited,

the number of forbidden iterations increases. This is controlled by a backoff parameter. Here,

we summarise the tabui adaptation rule as following:

. At each iteration, all LLH i with tabui = 0 are selected to form the trial set.

. If LLHi makes an improvement, backoff i = minimum value;

. Else backoff i = backoff i ∗ 2; assign tabui with randomly-picked value in [0, backoff i]

. For all LLHi with tabu tenure tabui > 0, tabui = tabui − 1
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Reinforcement learning (RL)

RL (Nareyek (2004)) rewards (positive reinforcement) good LLH choices and punishes (nega-

tive reinforcement) bad LLH choices. Each LLH is given a utility value, which is repeatedly

updated based on the LLHs performance. Nareyek (2004) tests various positive and negative

hyperheuristic reinforcement methods and we apply the one, which is identified as the best,

described as follows:

. Choose the w% of LLHs, which have the highest utility to be the trial set.

. For each LLHi in the trial set, utilityi =
√
utilityi

. If the best performed LLHi makes an improvement, utilityi = utility2
i + 1

Choice function (CF)

We consider the CF to be a different utility adaptation scheme (Cowling et al. (2000)). In each

iteration, the utility of each LLHi is updated based on a linear function that considers three

factors: 1) the LLH’s performance is evaluated by fitness change and execution time; 2) the

ability of the LLH in collaboration is evaluated by successively applied pairs of LLHs; 3) the

CPU time elapsed since the LLH was last called. The x% of LLHs that have the highest utility

are selected to form the trial set.

So far, we have introduced three ways of managing the candidate LLH set. In summary,

BEBO emphasises that poorly-performing LLHs should not be tested in incremental iterations.

It is specifically designed for use when a large set of LLHs is available. This tabu strategy

quickly removes most of the unhelpful LLHs. In comparison, the reinforcement rules applied

in RL emphasises more on the best-performing LLH and all other sub-optimal LLHs, in turn,

have chances to be selected. Lastly, CF uses a weighted function to balance the usage of the

best-performed LLHs and the waiting time of sub-optimal LLHs. For different problems, the

tuning of weight parameters of CF is needed.

7.3.2.3 Variable neighbourhood decent with learning (VND L)

VND (Mladenović and Hansen (1997); Hansen and Mladenović (2001); Hansen et al. (2010))

differs from the learning-based hyperheuristics in the use of intensive local search, meaning

that the selected LLH is applied repeatedly until no more improvement is found, rather than

applying it once only. VND is a parameter-free approach. LLH selection for standard VND

uses a pre-ordered LLH set, with some researchers addressing VND sensitivity to the order of

LLHs (e.g. Hemmelmayr et al. (2009)). In order to adapt the application order of LLHs, we

propose a number of variations to the VND (Hansen et al. (2010)) combined with reinforcement

learning techniques.
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Algorithm 7.3.2 VND L(x, LLHs)

1: Choose a subset LLHs′ ⊆ LLHs and order them in a list
2: Define: k′max = |LLHs′|, the number of heuristics to be tested.
3: Initialise k′ = 1
4: while k′ <= k′max do
5: x′ = ILS(x, LLHk), where ILS (iterative local search) applies the selected heuristic,

LLHk, repeatedly until no further improvement occurs; Within each iteration of ILS,
utilityk =

√
utilityk; if LLHk makes an improvement, utilityk = utility2

k + 1
6: If x′ is better than x then x = x′ and k = 1, otherwise k = k + 1
7: end while

In the first step of our VND L, line 1 in Algorithm 7.3.2, we select the top w% LLHs

according to the utility value measured for each LLH in the candidate set. Then we order the

selected LLHs using a predefined rule (i.e. random, ascending, or descending, as measured by

utility).

In this section, we have introduced various designs of hyperheuristics. Each uses its own

mechanism to adapt to the usage of LLHs in different search stages. In the following section,

we describe the LLHs that are specifically designed for PVRP and the algorithm framework of

hyperheuristic solvers for PVRP.

7.4 Solve PVRP using hyperheuristics

7.4.1 Initialisation

Most researchers use a two-phase approach to derive a solution to a PVRP (Section 2.2.1),

either through the process of assigning customer into days and solving the daily VRP, or by

assigning customer to each vehicle and solving a PTSP. We use the first type of method as

there is no strong relation between vehicles and customers in the benchmark problems. In

the assignment stage, Cordeau et al. (1997); Cordeau and Maischberger (2012), Hemmelmayr

et al. (2009) and Vidal et al. (2012) randomly choose a feasible customer-day pattern for

each customer, whereas Chao et al. (1995) and Gulczynski et al. (2011) try to minimise the

maximum amount of demand delivered in each day. Additionally, Christofides and Beasley

(1984) attempt to minimise the total distance from the depot on each day. To construct routes

for each day, the Clarke and Wright algorithm (CW) (Section 2.1.2.1) and GENI insertion

heuristic (Gendreau et al. (1992)) are most common. Our solution uses the same approach as

Hemmelmayr et al. (2009): random assignment followed by a CW-routeconstruction process

for each day.
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7.4.2 Low-level heuristics designed for PVRP

After constructing a complete PVRP solution, HyperILS (Section 7.3) is used to manage a

given set of LLHs to improve the initial solution. LLHs are direct operators that work on the

solution space. A good set of LLHs should be able to reach any solution in a solution space

when used in different orders and combinations. Therefore, it is critical to build a good LLH

repository. In this subsection, we first design three types of moves to modify a solution from

either or both the daily routes changes and by reassigning customers visit patterns perspective.

Then we introduce the LLH repository and the corresponding HyperILS structures applied in

the experiment section.

Route structure modification Here, we summarise moves used to modify single and mul-

tiple routes in the PVRP literature (cited at the end of each move description). These moves

are widely used in all variations of VRPs. Several books and tutorials describe these moves

in detail (e.g. Toth and Vigo (2002); Groër et al. (2010)). Many are also described in Section

2.1.2.2. Consequently, we are not going to present the steps of the modification process of each

move here.

λ-Opt: remove λ edges from a route and replace them with λ new edges (e.g. Lin (1965); Chao

et al. (1995); Hemmelmayr et al. (2009); Gulczynski et al. (2011); Vidal et al. (2012)).

Or-opt: remove a string with two to four nodes and insert it into a new position, either in the

same route (e.g. Alegre et al. (2007)) or in a different route (e.g. Vidal et al. (2012)).

One point move (1PM): relocate a point to a new position, either in the same route or in

a different route (e.g. Chao et al. (1995); Gulczynski et al. (2011)).

Two points swap (2PS): swap two points, either in the same route or between different

routes (e.g. Gulczynski et al. (2011)).

k-Relocate: relocate a string of k points to a new position, either in the same route or a

different route (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012)). When there is only

one point in the string, this move is identical to “1PM”.

k-Cross: swap two chains of points between two routes. Each chain contains maximum k

points (Alegre et al. (2007); Hemmelmayr et al. (2009)).

For PVRP, route-based moves are only applied to solve daily VRPs, after customer visit

patterns are assigned.
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Service pattern modification Each customer i in a PVRP has a set of valid service patterns

Λi. We use (i, λ) to represent a customer i that is assigned to a service pattern λ 1. A pattern

modification reassigns i to a different service pattern λ′ ∈ Λi. Consequently, all visits to

customer i in the routes of the current solution x are removed, and new visits are inserted

corresponding to the new pattern λ′. For example in Figure 7.2, suppose a customer requires

two visits in a four-day period and there are two allowable patterns pattern-1 (day 1 and day

2) or pattern-2 (day 3 and day 4). The current solution visits the customer in one route from

day 1 and one route from day 2. When a pattern move operates on this customer, we remove

both visits to this customer from day 1 and day 2 and re-insert the customer into the routes

from day 3 and day 4.

(a) Current solution (b) After a service pattern move

Figure 7.2: An example of service pattern modification

A random or random permutation reassignment strategy is often used to select a different

pattern from the available set (e.g. Hemmelmayr et al. (2009); Vidal et al. (2012)). Another

branch of solvers uses constraint reassignment to partially examine the available service pattern

set. A few integer programming models (e.g. Gulczynski et al. (2011); Crainic et al. (2012))

are proposed to guide the reassignment moves.

Here, we design four moves to modify customer service patterns. After a pattern-related

move is applied, we always get a complete PVRP solution.

Random pattern reassign (Pa RR): Randomly assign new feasible visit patterns to n ran-

dom customers. A tabu structure is used to prevent repeated reassignment of the same

customer. For example, if the service pattern of customer i is modified, we set an integer

tabu value tabui, which prevents selection of this customer for the Pa RR move for tabui

1Pattern λ has no relationship to λ in λ-Opt above. The overloading is unfortunate, but it is retained as
both the uses of λ are conventional here
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iterations.

Score-based reassign (Pa SR): This is similar to Pa RR except that the pattern with the

highest score Q(λi) is chosen for each customer i in n random selected customers. A

pattern score Q(λi) is associated with each pattern λi of each customer i. It is negatively

reinforced every time a customer’s pattern is tested and no improvement is found (Q(λi) =√
Q(λi)); and gets rewarded if an improvement is found (Q(λi) = Q(λi)

2 + 1).

Pattern reassign first improvement (Pa FIR): If a customer has an available visit pat-

tern, which produces a better solution after the insertion operator has been tried, we

move this customer.

Two points pattern swap (Pa 2SW): Swaps the visit patterns of two customers i and j,

which have the same available patterns, which are Λi = Λj and λi 6= λj .

Mixed modification In many PVRP instances, there is a large number of “single require-

ment” customers that have a visit frequency of 1 during the period. This type of customers

can be easily moved between days as there is no other affected day within one service pattern.

It is helpful to build moves that allow route structures to change between days and to modify

the customer service pattern at the same time. Different from service pattern modification,

mixed modifications operate on a large and continuous section of routes rather than on in-

dividual customers. In our moves set, we design two new mixed operators. These operators

only consider a chain that includes customers with the same available visit patterns and a visit

frequency of 1.

Relocate with Pattern (MRPa): Relocate a string of points from one route to another

route in a different day.

Cross with Pattern (MCPa): Swap two chains of points between two routes from different

days.

7.4.3 Partially destructive/constructive moves for re-initialisation

The idea of creating a move, by partially destroying and reconstructing a current solution, is

widely seen in the re-initialisation process of heuristic search. We name this type of move,

destroy-construct move (DCM). In PVRP literature (e.g. Chao et al. (1995); Cordeau et al.

(1997); Gulczynski et al. (2011); Chen et al. (2016d)), a DCM randomly removes up to n

customers and then reinserts them into the solution whilst respecting their available valid

service patterns.

In PVRP moves classification, DCM are akin to service-pattern-modification moves, in

theory. However, the key difference compared to a local search move is the degree of similarity
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between the solutions before and after a move is applied. In the wider literature of heuristic

solvers for VRPs, DCM has been successfully integrated into a local search framework, known

as Large Neighbourhood Search (LNS) (Shaw (1998)). More recently, Ropke and Pisinger (2005)

extend the remove/reinsert idea by managing a set of customer removal/reinsertion algorithms

instead of only having one removal and one insertion method. The different combinations of

removal/reinsertion algorithms enlarge the variety of neighbours of the current solution. In

other words, it increases the neighbourhood size of the current solution.

For the PVRP, we design the DCM described in Algorithm 7.4.1. If the current solution

has not been improved using HyperILS for a certain number of iterations, we assume that

the search is stuck in a local optimum from which it cannot escape by a small perturbation.

Then a re-initialisation mechanism is applied. The new solution is made feasible by repeatedly

removing the customer with the greatest load requirement from any route in the candidate

solution, which violates duration or load constraints, and re-inserting it in a route where the

constraints are met.

Algorithm 7.4.1 Re-initialisation

Define:
De: xbest is the best-found solution so far
De: prandom is the probability of generating a random initial solution
Reinitialisation(xbest, prandom)
if random(seed) < prandom then

random assignment and CW daily routes construction (Section 7.4.1).
else

Destroy w% of the longest routes in xbest.
For each customer in destroyed routes, randomly reassign feasible visit pattern.
Insert each customer greedily to cheapest position in each day of assigned pattern.

end if
Return the new (re)constructed solution x.

7.4.4 Summary of LLH repository for PVRP

To form our LLH repository for PVRP, the hyperheuristic applies the above moves as either

mutation or first improvement search. As presented in Table 7.1, in the mutation group, we

randomly apply a defined move on the current solution, whilst in the FI search, we go through

each point (or edge) to test the defined move until an improvement is found. All of our LLHs

maintain a feasible solution. If the low-level heuristic cannot make a legal move then the

solution is not modified. Route-related moves are parametrised by route ID, day, length of

chain, and number of points changed in one move. This makes it possible for an intelligent

hyperheuristic to select an LLH specifically related to each sub-problem (e.g. daily VRP or

single route optimisation). Pattern-related moves reassign the patterns of n customers. We

consider n = 1, 2, ..., 6 in our experiments. Because of the structure of THE LLH parameter
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design, our LLH repository contains 70-110 LLHs, depending on the problem instance.

Table 7.1: LLH Repository used in our PVRP hyperheuristics

Type Moves Set ID

Route related: mutation 2 points swap (2PS), Relocate, Cross Mur
Route related: FI 2Opt, 3Opt, 2PS, Relocate,Cross FIr

Pattern related: mutation
Random Pattern Reassign (Pa RR),

Score based reassign (Pa SR),
Two points pattern swap (Pa 2SW)

Mup

Pattern related: FI
Pattern reassign first improvement (Pa FIR),

Two points pattern swap (Pa 2SW)
FIp

Mixed: FI
Relocate with Pattern (MRPa),

Cross with Pattern (MCPa)
FIm

7.4.5 Algorithm Frameworks

Figure 7.3 illustrates the structure of solvers for PVRP. For the HyperILS process, ten al-

gorithms are investigated with different LLH set usage and LLH selection strategies used at

each stage during the search. The differences are summarised in Table 7.2. According to the

different LLH set management strategies in HyperILS, we further categorise these algorithms

into three frameworks. In Figure 7.4, framework 1 (FW1) organises all types of LLH together,

whereas framework 2 (FW2) clearly distinguish the types of LLH used in HyperPerturbation

and improvement stages. In framework 3 (FW3), we embed an iterative local search process

within the hyper improvement state.

Figure 7.3: Overview of PVRP solvers

7.5 Experiments and Analysis

We design experiments that allow us to analyse the performance of hyperheuristics from dif-

ferent angles. We use data (benchmark and real) with different spatial characteristics and

109



Chapter 7. Hyperheuristics and local search operators for PVRP 110

Table 7.2: Summary of HyperILS implemented. Each HyperILS is embedded with different
components at HyperPerturbation and HyperImprovement stages. Keys for the table: Simple
Random (SR); Random Permutation (RP); Reinforcement Learning (RL); Choice Function
(CF); Binary Exponential Back Off (BEBO); VND with learning (VND L). The ID for LLH
set is shown in Table 7.1.

HyperILS HyperPerturbation HyperImprovement Framework

LLH set Hyperheuristic LLH set Hyperheuristic

SROI - - ALL SR FW1

RDOI - - ALL SR FW1

RLFW1 - - ALL RL FW1

RLFW2 Mu r;Mu p SR FI r;FI p;FI m RL FW2

CFFW1 - - ALL CF FW1

CFFW2 Mu r;Mu p SR FI r;FI p;FI m CF FW2

BeboFW1 - - ALL BEBO FW1

BeboFW2 Mu r;Mu p SR FI r;FI p;FI m BEBO FW2

VNS RL Mu r;Mu p RP FI r;FI p;FI m VND L FW3

VNSr RL Mu r;Mu p SR FI r;FI p;FI m VND L FW3

also compare the performance of hyperheuristics with that of meta-heuristics applied to the

benchmark problems.

The experiments are designed to replicate benchmark conditions from Vidal et al. (2012).

In particular, the search is always terminated after the fixed amount of CPU time as stated in

Vidal et al. (2012). To check the suitability of this time limit for scalability experiments (Section

7.5.4), we run preliminary experiments using twice the CPU time. We find no significant change

in the quality of solutions, suggesting that a performance plateau is attained, and the chosen

CPU time is appropriate.

All experiments are implemented in C] and are executed on a cluster composed of eight

Windows computers, each with Intel Xeon E3-1230 CPU.

7.5.1 Problem instance

Our data comprises 42 benchmark problems (summarised by Hemmelmayr et al. (2009)) and six

instances from a real-world periodic maintenance problem 2. Our results are compared against

the best-found solutions in literature, shown in bold in Table 11.2 (Chapter 8). We classify

the problems according to their spatial characteristics (Figure 7.5). Table 7.3 summarises each

class. The six real-world instances are all street type. The big random benchmark problems

have both a larger number of customers and a greater clustering of data points than the small

random class.

2The real-world data and associated best-performance results can be found at https://www-users.cs.york.
ac.uk/~yujiec/
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(a) Framework 1

(b) Framework 2 (c) Framework 3

Figure 7.4: Framework variations of HyperILS (modified from Özcan et al. (2008))

(a) street style exam-
ple

(b) Small random
(from benchmark
p02) Christofides and
Beasley (1984))

(c) Big random (from
benchmark pr05
Cordeau et al. (1997))

(d) Symmetrical
problem (From
benchmark p32 Chao
et al. (1995))

Figure 7.5: Examples of four types of spatial distributions in the PVRP instance set.

7.5.2 Random vs learning based selection strategies

A hyperheuristic needs an efficient LLH selection strategy because it is impractical to test all

LLHs exhaustively. The first experiment compares the SR selection strategy to the learning-
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Table 7.3: Information on PVRP instances. n is the number of customers; m is the number
of vehicles available; t is the length of planning period in days. Benchmark labelling is taken
from Hemmelmayr et al. (2009).

Class n m t
average visit

frequency
number of problem

instances

Street style 240-324 3-5 6 1.6-2.1 6

Small random 50-100 1-6 2-10 1-2.1 10 (benchmark p01-p10)

Big random 48-417 2-12 4-7 1.1-3
13 (benchmark p11-p13, pr01-
pr10)

Symmetrical 20-184 2-9 4-6 1.8-2 19 (benchmark p14-p32)

based strategies, which are RL1, CF1 and BEBO1. The experiment uses framework 1 (Figure

7.4(a)), where all LLHs are managed in one candidate set. For RL1 and CF1, we test using

both the best 30% and the best 80% of LLHs in each iteration (See Section 7.3.2.2).

Table 7.4: The average percentage difference to the best-found solution over all instances in
each group, for simple random (SR) and learning based hyperheuristics, using framework 1 and
OI acceptance.

SR1 RL1(30%) CF1(30%) RL1(80%) CF1(80%) BEBO1

Street style +8.90 +5.36 +6.08 +6.47 +6.64 +4.90
Small Random +4.67 +2.12 +2.28 +2.15 +2.33 +2.06
Big Random +4.32 +4.14 +4.32 +4.28 +4.35 +4.13
Symmetrical +2.74 +1.46 +1.56 +1.55 +1.53 +1.50

Each algorithm runs 20 times on each instance of each of the four classes of problems to

give the percentage differences to the best-found benchmark route length of each instance. We

then average the results for each class of problems.

The results in Table 7.4 show that, whilst acceptable, none of our solutions match the

best-found benchmark solution. Learning-based selection strategies consistently out-perform

SR LLH selection, with BEBO offering the best performance. For both RL and CF, the limited

CPU time makes it difficult for the hyperheuristics to produce competitive results for testing

80% of LLHs in each iteration. In subsequent experiments we only use the best 30% of LLHs.

7.5.3 Impact of algorithm framework

Having shown that learning based selection strategies can manage a large number of LLHs in

a simple hyperheuristic framework, we now consider the different hyperheuristic frameworks.

In framework 1 (FW1), the only improvement (OI) acceptance rule means that mutation

LLHs are unlikely to be favoured. In framework 2 (FW2), a mutation operator is randomly

selected and applied as long as it generates valid solutions. Thereafter, FI LLHs are selected

using a learning-based strategy, as shown above. FW2 is similar to FW1 when we use the all-

move-accept rule. However, whereas FW1 evaluates the mutation and FI operators together,
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FW2 allows a separate consideration.

The results in Table 7.5 show that FW2 improves the performance of both RL and CF hy-

perheuristics for all types of problem instances. However, BEBO does not show any consistent

difference between framework 1 and 2.

Table 7.5: The average percentage differences to the best found solutions over all instances in
each group, for learning based hyperheuristics using frameworks 1 and 2 (FW1, FW2)

Instances RL(30%) CF(30%) BEBO

FW1 FW2 FW1 FW2 FW1 FW2

Street style +5.36 +5.26 +6.08 +5.54 +4.90 +5.31
Small random +2.19 +1.88 +2.28 +1.90 +2.06 +1.65
Big random +4.14 +3.93 +4.32 +3.88 +4.13 +3.93
Symmetrical +1.46 +1.45 +1.56 +1.54 +1.50 +1.56

Framework 3 (FW3) describes the algorithms using VND L hyperheuristic in the Hyper-

Improvement stage. The main difference to FW2 lies in the use of ILS once a FI LLH is

selected. Five variations are investigated and the details are described in Table 7.6. The name

“VNS RL” is given because of the similarity between VNS RL and the standard VNS (Hansen

et al. (2010)).

Table 7.6: Variations of VND L

Name HyperILS Description of the first step of VND L

VNS(R) VNS RL Select all LLH in the FI-LLH-set; Randomly order them

VNS(30%) VNS RL
Select top 30% LLH in the FI-LLH-set ranked by their utility
value;Randomly order them

VNSr(R) VNSr RL Select all LLH in the FI-LLH-set; Randomly order them

VNSr(A) VNSr RL
Select all LLH in the FI-LLH-set; Ascending ordering deter-
mined using utility

VNSr(D) VNSr RL
Select all LLH in the FI-LLH-set; Decending ordering deter-
mined using utility

We compare performance with the hyperheuristics introduced in Table 7.2. We then rank

the performance, awarding 16 points to the best performing hyperheuristic, and then 14, 12,

10, 8, 7, . . . 1, 0 points successively to the worse performing hyperheuristics.

Figure 7.6 shows a small difference in performance between FW1 and FW2. Compared

to the FW3 results, they are both generally low-ranking for all cases except the symmetrical

benchmark problems. This shows the positive impact of using ILS. Among FW3, the five

VND L variations show similar ranking. Random selection of the mutational LLHs combined

with random-ordered FI LLHs (VNSr(R)) is the most robust over all classes of problems, whilst

other algorithms in this group perform badly for the symmetrical instances.
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(a) Street style (b) Small random

(c) big random (d) Symmetrical

Figure 7.6: Hyperheuristics performance for different types of PVRP. Higher score is better.

7.5.4 Scalability

The PVRP is NP-hard (Vidal et al. (2012)). One of its biggest challenges is the rate of

growth in complexity with problem size. In preliminary experiments, we determined that the

performance of algorithms on symmetrical and non-symmetrical problems is very different. To

test the scalability of our hyperheuristics, we first group the problem instances into symmetrical

and non-symmetrical problems and then order them by the number of customers. Each method

runs 20 times.

Figure 7.7 shows that SROI (Table 7.2) has the worst scalability in both symmetrical and

non-symmetrical problems. For the other algorithms, there is little difference in performance for

problems with less than 60 customers. Algorithms from FW3 are the most robust across non-

symmetrical instances with 150420 customers. However, performance decreases dramatically

for these algorithms when applied to bigger problem instances in the symmetrical data set.

7.5.5 LLH Usage Analysis

Whilst hyperheuristics need little specialised design, the LLH repository does need thought. In

this experiment, we explore the usage of LLHs by different hyperheuristics. We use frameworks

2 and 3, which manage the mutation and FI LLHs separately. The results focus on the 9 FI

LLHs since there is no learning in mutational LLHs selection.

Figure 7.8 summarises average usage of FI LLHs for all learning-based algorithms using FW2
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Figure 7.7: Performance of hyperheuristics tested on PVRP with various sizes

(BeboFW2, RLFW2(30%), CFFW2(30%)) and all VNS-related algorithms using framework 3

(VNS(R), VNS(30%), VNSr(R), VNSr(A), VNDr(D)). First, we can see that“Relocate with

pattern” (MRPa) and “two points pattern swap” (Pa 2SW) are the most applied LLHs by all

hyperheuristics. Since we are using an OI strategy, this implies that they consistently produce

improved solutions. Second, algorithms using framework 3 have a stronger usage bias between

favoured and unfavoured LLHs than framework 2. We think this is because, once a favoured

LLH is selected in FW3, ILS enlarges the usage difference compared to FW2.

To further explore the contribution of specific LLHs in improving PVRP solutions, we test

the two best-performing hyper heuristics for frameworks 2 and 3 (RLFW2(30%) and VNSr(R))

with different subsets of the original LLHs. Each method is run over all problem instances and

the results are the average of 20 runs.

Figure 7.9 shows a change in performance after removal of the most-used FI LLH (Pa 2SW)

and all mutation operators except Pa RR (Subset 1): the performance of RLFW2(30%) and

VNSr(R) decreases dramatically for the “small random” and “symmetrical” problems. How-

ever, there is little difference for the big random instances, and we even find a small im-

provement for VNSr(R) on street style problems. One interpretation of this result is that the

strongly-performing FI LLHs, which are most effective in small and symmetric problems, tend

to become stuck in a local optima in the street style and big random problems.

115



Chapter 7. Hyperheuristics and local search operators for PVRP 116

(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Figure 7.8: FI LLHs usage for different types of problems. Results show the mean value of the
percentages of each LLH are applied during the search, where 0.1 stands for 10%. Error bars
show 95% confidence interval.

From Figure 7.8, the Relocate LLH is preferred in symmetrical problems but not in others.

The importance of this LLH is emphasised by the big reduction in performance of solving sym-

metrical instances when the Relocate LLH is removed from the LLH-set of RLFW2(30%)(Figure

7.9(a)). No significant differences are seen in the other there types of problem instances.

Interestingly, when we remove the “Relocate” LLH from LLH-set of VNSr(R), the impact

on street style and big random problems is unexpectedly strong and the performance decrease

is significantly large (Figure 7.9(b)). Looking at the proportion of fitness value improved by

each LLH for each type of problem (Figure 7.10), we find that the “Relocate” LLH contributes

over 10% of the fitness improvement for both street style and big random problems, even with

usage at about 5% during the search in both cases. In comparison to symmetrical problem, the

“Relocate” seems to make small contributions to fitness improvement through a lot of utilisa-

tion. This result suggests that some LLHs are rarely applied but produce big improvements,

whilst some LLHs produce smaller improvements frequently. The RL selection strategy applied

in our hyperheuristics only considers whether an LLH produces an improvement and misses the

information of fitness change. This decision-making strategy may misjudge the “strong” and

“weak” LLHs. However, there is no evidence showing that the hyperheuristics, which use fitness
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(a) RLFW2(30%)

(b) VNSr(R)

Figure 7.9: Performance of RLFW2(30%) and VNSr(R) using different subset of LLHs. Error
bars show 95% confident interval. The subset1 removes the most used LLH (Pa 2SW) and all
mutational operators except Pa RR

changes (e.g. CF), perform better. The challenge here is to use this highly problem-related

information at a hyper level, which works universally well.

To explore the robustness of different hyperheuristics when we remove the strongest LLH

(Pa 2SW), we extend the LLH subset experiments to SROI and RDOI. VNSr(R) shows the

best robustness (Figure 7.11). Comparing the RLFW2(30%) with VNSr(R) and the SROI with

RDOI, the algorithms with ILS mechanisms are more robust than the algorithms without ILS.

7.5.6 Comparison between hyperheuristics and other meta-heuristics

This section compares the two best-performing hyperheuristics from framework 2 and 3 (RLFW2(30%)

and VNSr(R)), with the published meta-heuristics, which have been designed or tailored for

PVRP, including (parallel) tabu search (Cordeau et al. (1997); Cordeau and Maischberger

(2012)), scatter search (Alegre et al. (2007)), VNS (Hemmelmayr et al. (2009)), record-to-

record ILP (Gulczynski et al. (2011)) and hybrid Genetic Algorithm (GA) (Vidal et al. (2012)).

No comparative data exists for our street style data set.
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(a) Street style (b) Small random

(c) Big random (d) Symmetrical

Figure 7.10: Proportion of fitness value improved by each FI LLH for different types of prob-
lems, using VNSr(R). Results show the mean value over problem instances in each problem
group, where 0.1 stands for 10%.

Figure 7.11: Impact of removing Pa 2SW on four hyperheuristics over all problem instances.
Error bars show 95% confidence intervals.

Benchmark research uses 32 instances collected from early work on PVRP (the old data

set). Cordeau et al. (1997) present 10 additional PVRP benchmark instances (the new data

set). We present our results for each of these two groups because some research works have not

tested both groups. Table 7.7 reports the percentage difference in average performance from

the best-found solutions (summarised in Vidal et al. (2012)) over these two data sets.

Our hyperheuristics achieve competitive results compared to the tabu search (Cordeau

et al. (1997)), scatter search (Alegre et al. (2007)) and VNS (Hemmelmayr et al. (2009)) for

the “old data” set. For the larger “new data” set, we achieve close to the best-found solutions

in most cases. The hyperheuristic approaches are about 1% worse than these problem-specific

algorithms, in terms of total route distance.

Compared to the hybrid-GA (Vidal et al. (2012)), which out performs all the other al-
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gorithms from literature, our hyperheuristics produce routes that are about 2% longer on an

average. However, hyperheuristics do not require any direct knowledge of the solution space

and require minimal design effort, whereas the meta-heuristics need to be designed for and

tailored to each problem.

Table 7.7: Performance on PVRP benchmarks compared with meta-heuristics; tabu search
(CGL) (Cordeau et al. (1997)), scatter search (ALP) (Alegre et al. (2007)), VNS (HDH) (Hem-
melmayr et al. (2009)), record-to-record ILP (GGW) (Gulczynski et al. (2011)), hybrid-GA
(VCGLR) (Vidal et al. (2012)), parallel tabu search (CM) (Cordeau and Maischberger (2012))

RLFW2(30%) VNSr(R) CGL ALP HDH GGW VCGLR CM

avg.
20run

avg.
(best)

avg.
20run

avg.
(best)

1 run -
avg.
10run

-
avg.
10run

avg.
10run

old data (%) 1.86 1.08 1.77 0.93 1.8 1.57 1.6 1.11 0.032 0.044
new data (%) 3.88 2.40 3.44 2.12 2.82 - 1.86 - 0.071 0.091

7.6 Conclusion

Our analysis of hyperheuristics for PVRP shows that both learning-based selection strategy

and ILS have positive impacts on an algorithm’s performance and enhance its scalability. ILS

also improves the robustness of hyperheuristics when a poor LLH set is given because ILS

concentrates on a neighbourhood structure until it reaches a local optimum, whereas approaches

without ILS have a wider but shallower exploration within the search space.

Our hyperheuristics find solutions, which are almost as good as those published for meta-

heuristics. Since all experiments require limited CPU time, it is possible that this is due to

the hyperheuristics’ additional overhead in applying search at the LLH-selection level. The

hyperheuristics are more adaptable to new problems. Our results show that hyperheuristics

can efficiently manage a large LLH set and automatically select appropriate LLHs.

The tested hyperheuristics show similar performance on real-world street style problem

instances and random instances. However, the symmetrical benchmarks tend to favour different

strategies and LLHs. This suggests that symmetrical instances are not a good indicator of

algorithm performance for real-world PVRP.

“Relocate with pattern” and “two points pattern swap” are the most applied LLHs across

all PVRP hyperheuristics: these LLHs make most improvements during the search. However,

experiments on LLH subsets show that a strong LLH may lead to premature local optima and

that further work is needed on the effect of ways to measure “strong” LLHs.

In the next chapter, we adopt the concept of learning mechanism to a local search procedure.

A very different design of credit assignment and selection of neighbourhood (firstly introduced

in Section 7.3.2.2) is proposed. We compare the best-performed hyperheuristic (VNSr(R) tested

on PVRP) with the new algorithm developed in the next chapter and deliver the analysis based
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upon the test on both PVRP and our drainage system maintenance problem.
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CHAPTER 8

A dynamic multi-arm bandit neighbourhood search

In Chapter 7, we discussed the effect of learning mechanism and algorithm frameworks on

hyperheuristic design. In this chapter, we treat the selection of a neighbourhood as a dynamic

multi-armed bandit (D-MAB) problem where the learning techniques for solving a D-MAB

can be used to guide the local search process. We present a D-MAB neighbourhood search

(D-MABNS), which can be embedded within any meta-heuristic framework. Given a set of

neighbourhoods, the aim of D-MABNS is to adapt the search sequence, testing promising

solutions first. The key difference between the D-MABNS and hyper-heuristics is the usage

of domain knowledge for neighbourhood management. We demonstrated the effectiveness of

D-MABNS on both of our drainage system maintenance problem (Chapter 3) and the bench-

mark instances of periodic vehicle routing problem (PVRP) (Section 2.2.1).The content in this

chapter is also presented in Chen et al. (2016a) and has been submitted to the Journal of

Heuristics.

8.1 Introduction

Local search based meta-heuristics have been a very popular research area in the last 20 years

and very impressive results have been obtained in many problem domains including routing and

scheduling problems. Meta-heuristics employ different algorithmic schemes for the exploration

of the search space. Variable neighbourhood search (VNS) (Hansen et al. (2010)), tabu search

(Cordeau and Maischberger (2012)), and hybrid genetic algorithm (Vidal et al. (2012)) they all

have different exploration behaviours. Section 2.1.2.3 describes some of the popular methods

in more detail.

However, there is little work available, which targets the exploitation technique of the search.

Most approaches apply simple local search (LS ) methods: starting from a feasible solution and

iteratively moving to a better solution by selecting it from a neighbourhood of the current

solution (see more in Section 6.1).

In this chapter, we introduce a machine learning-based LS, referred to as the dynamic

multi-arm bandit neighbourhood search (D-MABNS). D-MABNS is inspired by well-known

decision-making models for the multi-armed-bandit (MAB) problem. The major difference
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Figure 8.1: Search strategies on an optimisation problem with two variables, x1, x2 ∈ Z

with opting for a traditional LS procedure is that instead of pre-specifying the examining

order of neighbour solutions (e.g. lexicographic search, Funke et al. (2005)) at each iteration

of LS, D-MABNS dynamically adapts the search sequence to test promising solutions first.

D-MABNS can be embedded in any meta-heuristic or hyper-heuristic framework.

Figure 8.1 uses an example to illustrate the inspiration behind the D-MABNS. There are

three approaches for searching through the neighbourhood of the current solution, in the search

space of a simple discrete optimisation problem that has two variables (x1, x2). The purple ball

shows the current solution, and we define four types of move that generate eight neighbours of

the current solution. The aim is to find an improved solution (light green ball) as efficiently

as possible. In Figure 8.1, we see that checking potential moves in a random order finds the

improved move after 8 checks and the checking is performed in a pre-specified order, such as

variable neighbourhood decent (VND) (Hansen et al. (2010)) finds the improved move after

7 checks, whereas following a statistically-based sequence, such as in the case of MAB, the

improved solution is found after 6 checks.

The remainder of this chapter is organised as follows. Section 8.2 briefly discusses learning

technique to guide heuristic search and MAB problems; D-MABNS is introduced in Section 8.3;

In Section 8.4, we demonstrate its use on instances of geographically distributed maintenance

problem (GDMP) obtained from our drainage maintenance problem (Chapter 3); Section 8.5

analyses the performance of D-MABNS on periodic vehicle-routing problems (PVRPs) using

benchmark instances; and finally the findings are summarised in Section 8.6.
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8.2 Background knowledge

Self-adaptive approaches to guiding neighbourhood search combine machine learning and clas-

sical heuristic search techniques. Many approaches use the historical performance of operators

to adjust future operator utilisation. In the AOS literature, the key components are credit

assignment and decision-making (Costa et al. (2008)). The same concept is also applied for

LLH selection in hyperheuristics (Section 7.3.2.2).

Credit assignment describes a way to evaluate the quality of an operator. Normally, the

credit assigned to an operator is based on how often that operator makes a contribution or an

improvement (e.g. reinforcement learning hyperheuristic, Section 7.3.2.2), or on the magnitude

of the total contribution the operator has made so far (Soria-Alcaraz et al. (2014)). The latter

measurement is more sensitive to the fitness landscape of the problem instance, and it is usually

combined with a reward rescaling method. To evaluate each option, most approaches consider

either the instantaneous reward value after an operator has been applied or the average reward

over a sliding-time window. An alternative is to consider an extreme value (Fialho et al.

(2009)), on the basis that the generation of rare but highly beneficial improvements matter

more than frequent small improvements.

Decision making determines the selection of the next operator based on past credits. Prob-

ability matching and adaptive pursuit methods are probably the most widely applied mecha-

nisms (Thierens (2005)). Both methods update the option selection probability according to its

evaluation value and these probabilities are then used for selection in a weighted roulette wheel

like process. An alternative mechanism adds an exploration term to the quality evaluation

function and the decision-making process is determined on the evaluation values (e.g. using

the UCB1 algorithm, Auer et al. (2002)).

Multi-arm bandit problems The above decision-making process can be considered as a

MAB problem in which the goal is to maximise the total rewards collected over time. Auer et al.

(2002) define a typical static MAB problem in which the K arms each have an independent

reward probability pi, where pi ∈ [0, 1]. At each time step t, the player should select an arm j.

With probability pj the arm receives a reward rt = 1, otherwise rt = 0.

To solve a similar problem in a changing environment, Costa et al. (2008) describe a D-

MAB in which each arm has a uniform reward distribution, from the interval [pi,t − 1, pi,t + 1]

at time step t. Thus, for every T time steps, the mean value of reward distribution of each arm

pi,t varies. Further, the reward distribution of all arms change simultaneously.

In the next section, we use the fundamental concepts of D-MAB to address the dilemma of

exploration and exploitation during a neighbourhood search process. We introduce techniques

such as mapping solution fitness to rewards and dynamic neighbourhood management, to fit
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the characteristics of the neighbourhood search.

8.3 Dynamic Multi-arm bandit neighbourhood search

Our D-MABNS is inspired by many of the techniques reviewed in Chapter 6 and experimen-

tal experience in Chapter 7. D-MABNS maintains a search trace within a neighbourhood,

as is the case in improvement heuristics, but also introduces selection strategies between the

neighbourhoods, like the methods that statistically select LLH in hyperheuristics. Further-

more, D-MABNS uses some of the techniques from simple combinatorial search to discard

unpromising moves during the search.

8.3.1 D-MABNS overview and framework

The goal of search is to efficiently find an improvement direction in each iteration of the LS pro-

cess so as to reach a local optimum quickly. First, consider a typical VND approach to solving a

CVRP (Section 2.1). Neighbourhoods defined by moves, such as 2-opt and Cross-exchange, are

searched sequentially until an improved solution is found, as shown in Figure 8.2(a). The search

can be made more efficient, for instance, by ordering elements or by discarding unpromising

moves (Section 6.1.1). However the search is essentially over a set sequence of neighbourhoods.

The D-MABNS design is based on the observation that it can be inefficient to check the

entirety of one move’s neighbourhood before considering the neighbourhood of the next move.

D-MABNS uses a search pointer within each neighbourhood and dynamically decides when to

examine the next neighbour and from which neighbourhood structure. At each decision point,

D-MABNS looks at the neighbourhood, which has the best current expectation (Figure 8.2(b)).

(a) VND
(b) D-MABNS

Figure 8.2: The search strategies of VND and of D-MABNS

A neighbourhood Nk(x) represents the set of neighbours that can be obtained by one defined

move from the current solution x. For a given problem, there is a finite set of neighbourhood
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structures Nk, (k = 1, . . . , kmax). In D-MABNS (Figure 8.2(b)) each neighbourhood structure

Nk is associated with a value vk, which is used to evaluate the quality of Nk, based on the

neighbours seen so far in the neighbourhood. After a selected neighbour x′ ∈ Nk(x) has been

tested, a reward (or punishment) rk is given to Nk(x) and the value vk is updated. Then,

vk, (k = 1, ..., kmax) is used to decide which neighbourhood to look at next.

In the following sections, we look in more detail at the D-MABNS decision-making process,

based on the MAB model. We also propose dynamic neighbourhood updating, to further

improve the search efficiency of LS.

8.3.2 Decision making

In traditional static MAB problems, the MAB arms are rewarded either 0 or 1 according

to a Bernoulli distribution (Auer et al. (2002)). Applying the MAB model to neighbourhood

selection, each neighbourhood is treated as an arm and is characterised by a fitness distribution.

The fitness distribution of each neighbourhood can be approximated by an empirical inves-

tigation. Identifying the neighbourhood for the next check is an exploration and exploitation

dilemma in the design of D-MABNS. A greedy selection strategy would select the neighbour-

hood with the current maximum estimated vk. However we can introduce exploration into

the deterministic decision process by using approaches such as the Upper Confidence Bound

algorithm (UCB1) (Auer et al. (2002)).

Formally, we denote nk as the number of neighbours seen so far from the kth neighbour-

hood, and vk is the forecast value of the corresponding neighbourhood (measured from rewards

collected). The UCB1 algorithm selects the neighbourhood, which maximises the value below

(Auer et al. (2002)):

vk +

√
2log

∑kmax
i ni
nk

(8.1)

In Equation 8.1, the square root component represents exploration, thus encouraging the

search into less-explored neighbourhoods. The neighbourhood quality estimation, vk, represents

exploitation by preferring the neighbourhoods that have the best expectation value. The UCB1

algorithm ensures that each neighbourhood can be chosen but that the time that elapses

between selections for a sub-optimal neighbourhood increases exponentially.

8.3.2.1 Quality value estimation vk

D-MABNS requires a neighbourhood quality value estimation mechanism to forecast the value

of a neighbourhood, vk. Some existing approaches to credit assignment are outlined in Section

8.2. In our approach, we employ exponential smoothing (Gardner (1985)), which is often re-

ferred to in the operator-selection literature as additive relaxation (Costa et al. (2008); Fialho
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et al. (2010a)). Unlike simple average values, exponential smoothing provides a decay mecha-

nism, which becomes necessary later (Section 8.3.3) when D-MABNS is applied to a D-MAB

problem, in which new solutions are accepted during search. The value vk of the selected neigh-

bourhood is updated whenever a reward rk is received, using Equation 8.2 (Gardner (1985)),

such that vk is the weighted average of the previous smoothed value and the latest reward rk.

A smoothing factor α (0 < α ≤ 1) controls the decay rate of historical reward observations.

vk = (1− α)vk + αrk (8.2)

8.3.2.2 Reward functions and scaling

In combinatorial search problems, we usually define a fitness function to measure the quality of

solutions. Rewards are generally related to the fitness of the solutions found in a neighbourhood.

However, directly using the fitness as a reward can unbalance parts of the Equation 8.1, thus

biasing the search either towards exploitation or exploration.

To reduce the bias, a scaling factor can be added either to the exploration or the exploitation

parts of Equation 8.1. However, fitness measures and the range of fitness values are domain-

dependent, and so, the scaling factor needs to be determined experimentally on a problem-

specific basis. Here, we propose an adaptive reward function, which scales fitness into the

range of [0, 1], and does not need any prior domain knowledge to balance Equation 8.1.

For a neighbourhood Nk, we select and test a solution x′ from the set of neighbours of

the current solution, x. The fitness of solution x′ is returned by the function f(x′), and

δf = f(x′) − f(x) is the difference in fitness between the current solution and the tested

solution. We record the maximum and minimum changes of fitness over the last w tests of

neighbours of x, denoted as δmaxf and δminf , respectively. We refer to w as a time window

parameter, which can be set manually to any suitable value.

For a minimisation problem, in which δf < 0 indicates an improvement from the current

solution, we design a reward function RF , which aims to reward a bigger improvement with

a score closer to 1 and a worsening solution with a score closer to 0. In selecting an RF , we

note that during a neighbourhood search, it is common to have already tested many worse

neighbours from one or multiple neighbourhoods before finding any improvement. The fitness

of these solutions gives an indication of the quality of a neighbourhood, and so, simply assigning

a zero reward to a worse solution is not appropriate. Many reward functions could be applied

here. We have tested the linear reward, exponential reward, and sigmoid reward functions.

Figure 8.3 shows examples, from a detailed analysis, of how fitness change (x axis) maps to

rewards (y axis) for the three functions. A more detailed experimental analysis presented in

Section 8.4.4.1.
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(a) Linear reward function:
RF = (−δf + δmaxf )/|δmaxf − δminf |

(b) Exponential reward function:
RF = exp(−a(δf − δminf )/|δmaxf − δminf |),
where a = 2, 5, 10, 20

(c) Sigmoid reward function:
1) RF = 1/(1 + exp(δf )) (no scaling); 2) RF =
1/(1 + exp(a(δf − δminf )/|δmaxf − δminf | − a/2))),
where a = 5, 10

Figure 8.3: Examples of different reward functions, calculated from example fitness values in
the range of -10 to 10, using different scaling factors, a.

8.3.3 Dynamic neighbourhood management

So far, we have only talked about a search process moving from the current solution x towards

x′, where x′ ∈ Nk(x). Solution x′ is one move from x, and thus, it typically has a similar solution

structure. If the same move were to operate on solutions x and x′, it would also generate

solutions with similar structures. Furthermore, depending on the problem and neighbourhood

structure design, Nk(x) and Nk(x
′) may share many neighbours. If we denote the fitness

distribution of Nk(x) as F (Nk) and of Nk(x
′) as F (N ′k), then F (Nk) ' F (N ′k). There is

an obvious benefit, which the dynamic model offers, in that we do not need to build the

understanding of each neighbourhood structure from scratch at each LS iteration. However, a

mechanism is needed to record fitness changes.

Where the fitness distribution of each neighbourhood structure gradually changes as the

search progresses, we have a D-MAB. Costa et al. (2008) apply a hybrid of the UCB1 algorithm

(Section 8.3.2) to D-MAB, which uses a Page-Hinkley test (PH, see Section 8.3.3.1) to detect

abrupt changes in the environment. In our D-MABNS, “environment” refers to the fitness

distributions. Algorithm 8.3.1 presents D-MABNS, which is a proposal to adopt the concept

of D-MAB solvers for neighbourhood search problems.
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Algorithm 8.3.1 D-MABNS (x)

1: Define a set of neighbourhood structures Nk, (k = 1, ..., kmax)
2: Assign initial UCB value UCBk=1 to each Nk

3: Ik indicates the next solution x′ ∈ Nk(x) will be checked. Initially Ik = 0, (k = 1, ..., kmax)

4: vbest is the best forecasting value among all neighbourhoods. vbest = 0
5: while ∃Ik do
6: i.e. not reached the end of Nk(x)
7: k∗ = argmaxk∈{k=1,...,kmax}UCBk

8: x′ ← the solution indicated by Ik∗ .
9: Ik∗ move to next

10: if f(x′) < f(x) then
11: x← x′

12: Update neighbourhoods (Section 8.3.3.2)
13: end if
14: Calculate reward rk∗ based on changed fitness (Section 8.3.2.2)
15: if Environment change (Section 8.3.3.1) then
16: Reset all values used to calculating UCBs
17: vbest = 0
18: ∀Ik = 0, (k = 1, ..., kmax)
19: end if
20: Update all values used to calculate UCB
21: Update UCB values for all neighbourhoods
22: If vk∗ > vbest, then vbest = vk∗

23: Pruning(Ik∗ ,vk∗ ,vbest) (Section 8.3.3.3)
24: end while
25: return x

8.3.3.1 Environment Change detection

We use the Page-Hinkley (PH) statistics (Page (1954); Hinkley (1971)), as proposed by Costa

et al. (2008), to detect significant changes in fitness distributions. For a given set of reward

observations over time {rk,1, ..., rk,t, rk,t+1...}, PH detects a reward rk,t+1, which does not come

from the same statistical distribution as the previous observations.

Formally, we use rk to represent the average value of rewards observed so far for neigh-

bourhood Nk; rk is updated every time a new reward is received. We define εk,t = rk − rk + θ

to represent the difference between the reward rk from the current iteration and the average

reward value, where θ is a tolerance parameter that is used to enhance the robustness of the PH

test in a slowly changing environment. For simplicity, we set θ = 0. The PH statistic calculates

a variable mk,t as the sum of εk,t1 , ..., εk,tmax , and a variable Mk,t which is the maximum value

of mk,1, ...,mk,t.

Algorithm 8.3.2 is used to update information about the tested neighbourhood and to detect

environment change. The parameter λ is a user-defined value, which controls the trade-off

between false positive and false negative detection errors, just like θ, λ controls the sensitivity
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of the change detection. In Section 8.4.4.4, we present experimental tests on a set of λ values

to analyse the impact of change detection on algorithm performance.

Algorithm 8.3.2 Environment change (Costa et al. (2008))

1: rk ⇐ 1
nk+1(nkrk + rk+1)

2: nk ⇐ nk + 1
3: mk ⇐ mk + (r̄k − rk + θ)
4: Mk = max(Mk,mk)
5: if Mk −mk > λ then
6: return environment is changed.
7: else
8: return false
9: end if

8.3.3.2 Feature Sequential Search and Neighbourhood Updating

Within the neighbourhood search, D-MABNS applies Feature Sequential Search (FSS). FSS

identifies a set of changing elements of a move according to the cost of changing elements.

The elements represent some basic units of our solution structure, such that each next element

of a neighbourhood should get generated in a constant time. For example, for a 2-opt move,

elements might be edges.

FSS usually considers a candidate element list sorted on the basis of intuition by features

(e.g. in 2-opt moves, length of edges). However, sorting is not essential. Figure 8.4(a) shows

construction of a complete move, involving two changing elements labelled 3 and 6, which

produce a neighbour solution from N1, using a nested loop to search through the elements list.

(a) Neighbourhood search inN1(xt) at LS
iteration t

(b) Neighbourhood search in N1(xt+1) at
LS iteration t+ 1

Figure 8.4: Neighbourhood Updating

In Figure 8.4(b), solution xt+1 is derived from solution xt in Figure 8.4(a). The two solutions

share mostly the same structure and many joint neighbours, and so, we do not need to check the
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neighbours that have already been checked in the previous LS iteration. In practice, it is also

unlikely that a move which was checked in iteration t and did not make an improvement would

produce a better solution in iteration t+ 1, even when the move leads to different solutions in

iteration t+ 1.

After making a move from xt to xt+1, where xt+1 ∈ N1(xt), we continue to check other

elements that still exist in the new solution xt+1, checking the new elements last. The previously

checked elements are reconsidered only when the algorithm detects a change (Algorithm 8.3.1,

line 15). When the pointer Ik (Algorithm 8.3.1) reaches the end of a neighbourhood Nk(xt), a

large negative value is assigned to the neighbourhood to ensure that it cannot be chosen again

until PH signals a change.

8.3.3.3 Neighbourhood structure pruning

For each neighbourhood structure Nk, the forecasting value vk is used to keep track of quality.

vk can also be used as a prompter to prune a bad neighbourhood. As shown in Algorithm 8.3.3,

when vk is set to a large negative value, the neighbourhood structure Nk will not be selected

and updated until there is a change in fitness distribution. This strategy is especially useful

in conjunction with FSS, where a promising area of a neighbourhood is explored early in the

search. The user-defined parameter γ in Algorithm 8.3.3 adjusts the tolerance of accepting a

neighbourhood that is worse than the best evaluated one. Setting γ = 0 turns off the pruning

function.

Algorithm 8.3.3 Pruning(Ik∗ ,vk∗ ,vbest)

1: if vk∗ < γ vbest then
2: set Ik∗ to the end of Nk

3: set vk to a big negative value
4: end if

This section has introduced the general concept of D-MABNS, as well as the techniques

that it employs. The following sections apply D-MABNS on two combinatorial optimisation

problems, using a real-world scenario and a set of benchmark problems.

8.4 An application to maintenance scheduling

8.4.1 Problem description

We first test our D-MABNS on instances of GDMP, which are obtained from the real-world

gully pot system maintenance problem (Chapter 3). For completeness, we briefly recall the

high level objective (Equation 3.1), which is to select a judicious subset of gullies from N assets

and assign them to days of the following maintenance period in order to minimise the risk in
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the period:

∑
d∈W

N∑
i=1

riPi(d)

There are three following constraints, which must be respected by a feasible scheduling

plan: (1) a maximum of K routes can be generated each day (one per vehicle); (2) each route

of maintenance actions must start and end at the depot; and (3) for any route, the maximum

duration constraint should be respected.

The original data is for gully pot maintenance in Blackpool, UK. The gully pot maintenance

system records 28,294 gullies distributed over approximately 36.1km2 (Chapter 3). To test the

performance of our D-MABNS algorithm, we generate five problem instances of various sizes,

by randomly selecting 10%, 25%, 50%, 75% and 100% of the gullies from the system. Each gully

pot is associated with location, risk impact ri, the number of days since its last service, and

two parameters for the failure probability estimation function Pi(d) 1. The planning horizon in

each instance is set to 7 days (W = 7) and only one vehicle is available to deliver the service.

8.4.2 GDMP solution approach

In Chapter 5, we use BEBO hyperheuristic to schedule maintenance actions, and we use the

same solution framework for the D-MABNS experiments. We briefly outline the process as

following:

1. Preparation: Generate a candidate route set Sall, which ignores all risk impact and

failure rate information; optimise for distance using a standard CVRP heuristic approach.

2. Initialisation: Generate a schedule for W days by selecting the routes s ∈ Sall with the

highest risk, measured by
∑

i∈s riPi(d1), where d1 represents the first day of W period.

3. Optimisation The optimisation steps repeat for a fixed amount of CPU time.

Improvement: Apply a heuristic approach to improve the solution, evaluated by

the objective function in Equation 3.1.

Re-initialisation: Randomly destroy a few days’ schedule from the output of the

improvement stage; rebuild the destroyed routes from scratch by considering assets with

the highest risk estimation and a few randomly selected asset points; and assign these

routes randomly to the days.

BEBO hyperheuristic is employed in the improvement stage (above) and we now replace

BEBO by D-MABNS.

1A Weibull distribution is used to estimate the lifetime of a gully pot. The data set, can be found online, at
https://www-users.cs.york.ac.uk/~yujiec/
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8.4.3 Local search moves

We use the same six moves for D-MABNS and BEBO (Chapter 5). Our implementation of

BEBO applies a first-improvement heuristic (using lexicographic search) for each move as a

low-level heuristic (denoted as LLH1 - LLH6, Chapter 5). Differently, D-MABNS governs the

search between all available moves directly (Figure 8.2(b), Section 8.3.1). For clarity, we list

the six moves (denoted as move1 -move6 ) as follows.

move1 Delete two edges each from two routes and reconstruct to generate two feasible new

routes. This move is the same as chain cross exchange, where each chain contains a

maximum of k points, 1 ≤ k ≤ 5.

move2 Insert k points that do not appear in the schedule plan, using the cheapest insertion

heuristic with a relaxed route duration constraint. If, as a result of the planned insertion,

any target route exceeds the duration constraint, repeatedly remove the best-condition

point from the route until it becomes feasible, 5 ≤ k ≤ 20.

move3 Replace the last n days’ schedule with n other routes from the candidate set Sall,

1 ≤ n ≤ |W |.

move4 Same as move3, except that we choose the schedule of n days to replace uniformly at

random, instead of the last n days’ schedule, 1 ≤ n ≤ |W | − 1.

move5 Switch the schedules of two days with each other

move6 Move one day’s schedule to an earlier day.

8.4.3.1 Element sorting by features

It is not essential to sort elements, however, we do so whenever we have suitable domain

information. GDMP is a risk-minimisation problem, and so, many elements can be sorted by

their current risk estimation. In our implementation, move1 uses an edge list that is sorted

by the length of the edges whereas move2 uses an asset point list that is sorted by the current

risk estimation of each point. Due to the large number of asset points we have in an instance,

a single search loop that selects the next k points is used instead of a nested loop. move3 and

move4 use a route information list, which is sorted by the sum of the current risk of all points

in each route. move5 and move6 do not sort their elements by any features.

8.4.4 Computational results for GDMP

This section first reports a series of sensitivity analyses on the parameter settings of D-MABNS.

We then compare D-MABNS with two algorithms based on the MAB. The algorithms tested
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apply different decision-making strategies (probability matching (Goldberg (1990)) and random

selection) allowing for a comparison to be drawn with the UCB1 algorithm (Section 8.3.2).

Section 8.4.6 compares D-MABNS to BEBO hyperheuristics (Chapter 5) and a modified VNS

(denoted as VNSr(R), Chapter 7). All algorithms are implemented in C] and executed on a

cluster composed of 8 Windows computers with 8 core Intel Xeon E3-1230 CPUs, which have

16GB RAM. All tested parameter settings and algorithms start with the same initial solution

obtained by the Preparation and Initialisation steps in section 8.4.2. For each of the problem

instances, each algorithm is run 30 times. The stopping condition for all algorithms is the same

CPU time, as shown in Table 8.1.

Table 8.1: Data set information and CPU time allowed for experiments

ID number of asset CPU allowed

mi01 2815 120s

mi02 7037 240s

mi03 14074 900s

mi04 21111 1800s

mi05 28149 3600s

8.4.4.1 Sensitivity analysis

Finding the best setting of parameter values is a non-trivial and time consuming task, which

often requires considerable expertise and experience. Table 8.2 summaries the parameters used

by the D-MABNS algorithm, including the time window parameter w and the reward function

RF (Section 8.3.2.2), the smoothing factor α (Section 8.3.2.1), the fitness distribution change

λ (Section 8.3.3.1) and the pruning rate γ (Section 8.3.3.3). For each parameter in Table 8.2,

we sample values from a given range and run each parameter-set 30 times for the predefined

CPU times, as shown in Table 8.1. The parameter-set that has the best average performance

over all instances is used for comparison with other heuristic methods.

Small values of w, the time window parameter, mean that only recent fitness impacts

decision making, resulting in a more dynamic reward process over time. Consequently, if recent

fitness observations are not good, even a slightly better fitness may result in a big reward. For

the smoothing factor α, larger values mean that historic rewards are forgotten more quickly.

Our preliminary tests show a strong impact on performance from the environment change

detection parameter λ and the neighbourhood pruning parameter γ. Some interesting be-

haviours have also been observed in reward function usage and search within neighbourhoods.

Therefore, we design further experiments and explore these parameters in more detail.

133



Chapter 8. A dynamic multi-arm bandit neighbourhood search 134

Table 8.2: Parameter settings

Parameter Tested range Value applied

Time window w [100, 200, 400, 600, 1000, 3000, 5000] 400
Reward function RF linear, sigmoid, exponential exponential (a=5)
smoothing factor α [0.2, 0.4, 0.6, 0.8, 1.0] 0.8

Environment change λ [0.01, 0.05, 0.15, .., 0.3, 0.5, .., 1.0, 2.0, .., 4.0] 0.05
Pruning rate γ [0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9] 0.7

8.4.4.2 Reward function and Neighbourhood pruning

As discussed in Section 8.3.2.2, the reward function maps the fitness changes to rewards that

are used to in the neighbourhood quality evaluations. The reward function, along with the

pruning parameter (Section 8.3.3.3), are essential parts of the D-MABNS algorithm design.

We test three reward functions and different settings of the neighbourhood pruning parameter

γ. The other parameters (Table 8.1) are fixed as {w = 400, α = 0.8, λ = 0.05}. Each setting

runs 30 times.

We run the experiment on all five GDMP instances, and observe similar results. In all

plots, we can see that the pruning parameter γ is important to algorithm performance. Figure

8.5 presents the results for the mi02 instance as box plots of risk (y axis) against pruning

parameter settings (x axis).

Figure 8.5(a) presents the results for the exponential reward function. Recall that the

function uses a positive constant a to map the raw fitness change δf to the range [−1, a − 1],

such that when δf > 0, lim
a→∞

rk = 0. Bigger values of a emphasise the importance of the greatest

improvements. From Figure 8.5, we can see that when γ = 0, there is no significant difference

across all setting of a. However, when γ is increased to values in the range 0.01-0.05, bigger a

values achieve better results. This is because a bigger a value emphasises the difference between

results of improving and worsening moves. Combining the effect of the pruning mechanism

and the scaling factor a for the exponential reward function, bigger a values result in an earlier

or more harsh neighbourhood pruning policy, which seems to especially benefit our problem

instances. However, this advantage fades as γ increases. The best-performing combination

here measured by the mean fitness value is {γ = 0.5, a = 5}.

The results for the sigmoid reward functions (Figure 8.5(b)) follow similar patterns to those

of the exponential reward functions. Comparing the best setting of sigmoid reward function

{γ = 0.7, a = 10} with the best setting of exponential reward function and linear function

(Figure 8.5(c)), no significant difference can be seen in terms of solution quality.

These results are common to all our GDMP instances. However, because of the different

fitness landscapes and neighbourhood structure design, a suitable reward function must be

chosen for each new problem domain. The interaction of reward function and other design
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(a) RF = exp(−a(δf − δminf )/|δmaxf − δminf |)

(b) RF = 1/(1 + exp(δf )) (no scaling); RF = 1/(1 + exp(a(δf − δminf )/|δmaxf − δminf | − a/2)));

(c) Linear function: RF = (−δf + δmaxf )/|δmaxf − δminf |, compared with the other two

Figure 8.5: Effect of reward function with different neighbourhood pruning parameter settings
γ, illustrated for mi02. We measure the algorithm performance using the objective function of
risk minimisation.

elements, such as pruning, may also be domain specific. For the linear reward function, which

simply squashes the δf in to the range of [0,1] with respect to the minimum and maximum value

seen within time window w, too small w leads to a random reward system. In comparison, the

exponential and sigmoid function are less sensitive to w. The exponential function especially

amplifies small differences in δf and needs an extra parameter a to adjust the shape of reward

function. This may affect the overall performance of algorithms. Increasing a leads to a smaller

reward range of worsening fitness, which dilutes information from most tested neighbours. We

suggest assigning a to a value smaller than 10 to map the worst found fitness to values about

10−5. The sigmoid function has a natural advantage of producing values in the range [0,1]
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(Figure 8.3(c)). The calculation does not need assistance from the maximum and minimum

records within the sliding time window w. A smaller number of parameters is good, but the

function shape may not generate an efficient mechanism.

8.4.4.3 Neighbourhood sorting and pruning

Our proposed D-MABNS uses FSS (Section 8.3.3.2) to determine the order in which neighbours

are checked within one neighbourhood. To verify the importance of the FSS strategy, we capture

a few neighbourhood structures for a current solution x, and plot the δf .

Figure 8.6(a) shows one example structure of the neighbourhood Nmove2(x). Because the

search using move2 applies a single search loop that picks every next k elements (Section 8.4.3),

only a sub-area of Nmove2(x) is checked. In this case, the sorted features seem especially helpful

in forming improved solutions early in the search stage and pruning the neighbourhood after

about the 50th examination would most likely produce savings in CPU time without missing

good moves.

(a) Neighbourhood structure using move2

(b) Neighbourhood structure using move1

Figure 8.6: A snapshot of two neighbourhood structures using or not using FSS, illustrated for
the mi02 instance.
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Comparing the search with unsorted and sorted elements for move1, the feature sorting

strategy shows no significant contribution to the search in Nmove1(x) (Figure 8.6(b)). In this

case, the pruning strategy may not be beneficial as improvements could be found throughout

the neighbourhood. Recall that the elements in move1 are sorted by the length of edges,

whereas our objective function is risk minimisation. This result reveals the importance of

problem domain knowledge in FSS design. If the fitness distribution of a neighbourhood shows

strong orderliness on one or a few features, FSS significantly improves the search efficiency. In

other situations, the sorting process may not be worth the effort.

Figure 8.7: Impact of sorted features with different pruning parameter γ, on the mi02 instance.
Parameter settings: {w = 400, RF = exp(a = 5), α = 0.8, λ = 0.05}

An example of another, more direct, way to illustrate the impact of FSS and pruning is

shown in Figure 8.7. We repeat each parameter setting 30 times with the pre-defined CPU time

and record the solution quality. The same experiment has been tested for our five instances

(see Appendix, Figure 11.1) and similar effects have been observed across all of them. Overall,

the results clearly show the positive impact of FSS on algorithm performance. Feature sorting

guides the search to promising moves in the early stages. Combined with the pruning strategy,

FSS significantly improves the search efficiency. On the other hand, when not using feature

sorting, pruning reduces the chance of finding good neighbours too early into the search. As we

can see from Figure 8.6, when a neighbourhood is unsorted and its fitness landscape is chaotic,

the pruning decision (see Algorithm 8.3.3) becomes less meaningful.

8.4.4.4 Environment change detection

D-MABNS resets the evaluation of all of the neighbourhood arms when the PH statistic signals

an environment change (Section 8.3.3.1). The PH statistic is widely used in D-MAB, but no

analysis is presented (Fialho et al. (2009); Sabar et al. (2014)). In order to understand the
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Figure 8.8: The effect of parameter λ on environment change detection. The green points
indicate a change leading to a resetting of arms and the red points represent the normal
situation. Other parameter settings are presented in Table 8.2

contribution of the PH statistic and the impact of the parameter λ, we test different λ values

with other given parameters {w = 400, RF = exp(a = 5), α = 0.8, γ = 0.05}. A small γ value

is used for this experiment as preliminary tests showed that a large γ diminishes the impact of
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λ.

(a) mi02: Performance with different lambda set-
ting

(b) mi02: Cluster validation index

(c) mi04: Performance with different lambda set-
ting

(d) mi04: Cluster validation index

Figure 8.9: The effect of parameter λ on algorithm performance. The Dunn index is calculated
as follows: Dunn = 1

K

∑i=K
i=1 Dunni, where K is the number of neighbourhoods; Dunni =

δ(Ctrue,Cfalse)
max ∆C

, where δ(Ctrue, Cfalse) measures the Euclidean distance between the centres of

two clusters (denoted as external distance), and ∆C = 1
|C|

∑
d(s, v(C)) measures the average

distance between all samples s ∈ C and the cluster’s centre v(C) (denoted as internal distance).
For more information about cluster validation index (see Rendón et al. (2011)).

We evaluate the PH statistic via algorithm performance in terms of final solution quality.

As before, each parameter setting is repeated 30 times with the pre-defined CPU time (Table

8.1). Figure 8.8 illustrates an example of rewards collected by move2(k = 10) in the different λ

settings given. As λ gets bigger, the PH statistic becomes more tolerant of reward variations.

Figure 8.9(a) shows that D-MABNS achieves worse results when λ is too small, because there

is too much noise in the PH alarm signals.

To further analyse the relation between solution quality and environment change detection,

we measure the distance between PH signals for environment change and PH for the normal

situation. We repeat each parameter setting 5 times for 180 CPU seconds, and each run records

the rewards collected over time by each neighbourhood arm. Each data point is labelled True or

False depending on whether it is a changing point or not. We then use a Dunn index (Rendón
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et al. (2011)) to evaluate the decision quality of PH by measuring the distance within and

between environment changing and non-changing points. The intuition is that lower the noise

in the detection, the better is the solution quality that an algorithm can achieve. Figure 8.9(b)

includes the average value of the Dunn index of each neighbourhood detection result. We can

see that as the Dunn index gradually gets bigger, the solution quality in Figure 8.9(a) also

gets better. Note that the Dunn index could thus be used to efficiently tune the environment

threshold parameter.

8.4.4.5 Environment change detection and Neighbourhood pruning

In the previous experiments, we observe the strong positive impact of the pruning parameter

γ on the algorithm performance of our GDMP instances. As γ increases, the algorithm perfor-

mance also improves. When γ is bigger than 0.3, sensitivity to other parameters is reduced.

Figure 8.10: The effect of parameter λ on the algorithm performance with two different pruning
parameter setting γ. The other parameter settings are {w = 400, RF = exp(a = 5), α = 0.8}.
Tested on mi05.

Our experiments on the combined impact of environment detection λ and pruning parameter

γ give a rather different view. For example, Figure 8.10 shows that, when the environment

detection parameter λ is bigger than 0.25, the bigger pruning parameter γ starts to show its

negative impact. To compare the search strategies, three box plots, A, B, and C, are picked out

in Figure 8.10. Parameter settings at A (λ = 0.01, γ = 0.5) emphasise wide exploration, whilst

those at C (λ = 4.0, γ = 0.05) concentrate on exploitation. During exploitation, historical

reward information becomes useful to guide the search. Smaller λ values give poorer results

because the MAB arms are reset too frequently, resulting in loss of historical information.

Parameter setting B is the best performing one in this experiment, as it achieves a balance

between exploration and exploitation. Results for the other GDMP instances are presented in

the Appendix Figure (11.2).
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8.4.5 Other search strategies between neighbourhoods

Apart from the UCB1 algorithm, many other decision making strategies are proposed in the

existing literature (Section 8.2). These methods introduce strategies from different perspectives

to tackle the exploration and exploitation dilemma of MABPs. In this section, we compare the

UCB1 method to probability matching (PM) (Goldberg (1990); Thierens (2005)) and a simple

random (Ran) selection strategy.

8.4.5.1 Probability matching (PM)

PM is widely used for operator selection (Fialho et al. (2010a)). Similar to many genetic

algorithms (Dianati et al. (2002)), it applies a roulette wheel selection. At each decision point,

the probability p of examining a neighbourhood is proportional to its forecast quality. The

detail of PM has been described in many papers (Goldberg (1990); Thierens (2005)).

Compared to UCB1, PM implements exploration by adding uncertainty to the selection

process instead of using a statistical equation. At each decision point, the probability p of

examining a neighbourhood is proportional to its forecast quality. The benefit is obvious:

there is no need to rescale fitness to tune the statistic.

Our implementation of PM follows the pseudo code provided by Thierens (2005). We use

an exponential reward function, as shown in Function 8.3, for which no scaling factor a is

needed. Other parameters for PM are: {pmin = 0.01, α = 0.8, γ = 0.94}, where pmin is the

minimal probability value to ensure that none of the arms are ignored. α and γ are the same

parameters as for the UCB1 algorithm, with values selected through preliminary experiments.

RF = exp(−δf/f(x)) (8.3)

8.4.5.2 Random selection

Random selection (Ran) randomly selects a neighbourhood Nk from the available candidate set

following a uniform distribution. Compared to UCB1 and PM, Ran does not need any statistical

technique to evaluate arms. To apply a neighbourhood pruning strategy, we simply cut off a

neighbourhood if no improvement is found through the last m tries of that neighbourhood.

We use m = 50, as the value that produces the best average results across our five GDMP

instances.

8.4.5.3 Comparing the UCB1, PM and Ran strategies

We compare UCB1 (parameter settings in Table 8.2), PM and Ran with each other. Each

algorithm is repeated 30 times and the results are shown in Figure 8.11. For small problem in-

stances (instance mi01, mi02), there is no obvious difference between the three tested methods.
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However, for larger problem instances, the performance of Ran is much worse than the other

two methods. This suggests that there is some useful information in the fitness distribution

and landscape and that we can statistically capture this information via the reward function,

to guide the search in the correct direction.

(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Figure 8.11: Performance comparison of different decision making strategies: UCB1, PM and
Ran

8.4.6 Comparison to traditional hyperheuristic

(a) mi01 (b) mi02 (c) mi03 (d) mi04 (e) mi05

Figure 8.12: Performance of D-MABNS (labelled as UCB1), VNSr(R) and BEBO

In this section, we compare D-MABNS with two hyperheuristic algorithms, which are BEBO

(Chapter 5) and the VNSr(R) (Chapter 7). As Figure 8.12 shows, D-MABNS improves the

solution quality for all tested instances.

Comparing the architecture of the three algorithms, D-MABNS (Figure 8.2) is more like a

breadth first search, whereas BEBO and VNSr(R) use first improvement (FI) low-level heuris-
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(a) mi01

(b) mi05

Figure 8.13: Comparing single runs of D-MABNS, VNSr(R) and BEBO.

tics to repeatedly examine one type of move until an improvement is found, D-MABNS propels

the neighbourhood search in a promising direction, which tends to improve the algorithm effi-

ciency. At a higher level, in comparison to VNSr(R), D-MABNS builds a descent search path

with a more flexible combination of moves. Furthermore, D-MABNS introduces many tricks,

such as dynamic neighbourhood updating to avoid repeatedly checking the same elements as

well as pruning to discard unpromising areas of the neighbourhood.

Figure 8.13 plots an example of the risk value (minimisation objective) changing over time

using BEBO, VNSr(R), D-MABNS without pruning (γ = 0) and D-MABNS with pruning

(γ = 0.3). Pruning reduces unnecessary search space, thus allowing the algorithm to converge

earlier. Even without pruning, the D-MABNS algorithm has the advantage over the two

hyperheuristics, especially for larger problem instances. We attribute this achievement to the

D-MABNS algorithm’s breadth first style of search and dynamic neighbourhood updating.
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8.5 An application to PVRP

So far, we have tested the D-MABNS on five instances of GDMP and shown that it signifi-

cantly out-performs other hyperheuristic approaches. In Chapter 3, we have made the point

that our risk driven GDMP has a number of features, which make the model different from

the standard PVRP studied in the available literature. We think it would be interesting to

also test our algorithms on the PVRP instances to compare with a wide range of heuristic ap-

proaches. Compared to GDMP, PVRP has tighter constraints on service pattern requirements.

Consequently, the search space of feasible solutions for visiting pattern assignment is smaller.

8.5.1 Using D-MABNS as an improvement heuristic in a hyperheuristic

To evaluate D-MABNS performance on PVRP benchmark problems, we embed the D-MABNS

algorithm in the improvement stage of the HyperILS framework (Ochoa and Burke (2014);

Burke et al. (2010a)), as shown in Figure 8.14. The work presented here extends from Chapter

7, and it uses the same (re)initialisation and mutation moves in the HyperPerturbation stage.

(a) PVRP solution (b) HyperILS

Figure 8.14: Algorithm framework for solving the PVRP

To build the neighbourhoods for D-MABNS, we consider the same three following types of

moves as introduced in Chapter 7: route modification, customer service pattern modification

and mixed operators. Unlike the FI low-level heuristics employed by hyperheuristics developed

in Chapter 7, all local moves are directly managed by D-MABNS. FSS is used, as described in

Table 8.3.

8.5.2 Computational results for PVRP

In this section, we discuss the behaviour of D-MABNS on PVRP, and compare results to

D-MABNS on GDMP. In addition, we compare D-MABNS with the state-of-the-art meta-
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Table 8.3: Summary of local search moves for PVRP

Type Moves
Element sorting
(FSS)

Route related 2Opt, 3Opt, 2PS, Relocate, Cross Edges sorted by length

Pattern related
Customer pattern reassign,
Two customer pattern swap

Customers sorted by
adjacent edge lengths

Mixed
Relocate with pattern,

Cross with pattern
Edges sorted by length

heuristics, which are specifically designed for PVRP.

8.5.2.1 Sensitivity analysis

We conduct parameter sensitivity experiments, similar to those in Section 8.4.4.1. The best

performing parameter settings for D-MABNS are used for performance comparison with other

methods.

Compared to solving GDMP, neighbourhood pruning and sorting exhibit some different

behaviours. Figure 8.15(a) shows an example tested on PVRP instance p13, the largest bench-

mark containing 417 customers, of recording the number of solutions that D-MABNS (γ = 0)

examines before it moves to the next solution. Every interval between two worsening solutions

(shown as positive δ(f)) is an LS process. We can see that, at a late stage of each LS, the cost

to find an improvement increases significantly. When is the optimal time to prune the search

within a neighbourhood? Tested on p13 (Figure 8.15(b)), we can see the algorithm perfor-

mance decreases significantly when the pruning parameter γ is bigger than 0.01. Because of

early pruning, the algorithm cannot reach local optima and the final solution is of poor quality.

Similarly, sorting strategies do not give any obvious advantage in the PVRP solver. In con-

trast to GDMP, the PVRP fitness landscape does not show obvious orderliness on the features

we tried. Figure 8.16 illustrates two examples, from “relocate” and “3Opt” neighbourhoods.

Our experiments raise an important question: when is the appropriate moment to stop the

LS and restart the journey somewhere else in the solution space? From our experience, we

summarise the guideline rules for the same as follows.

1. For small problem instances, such as the PVRP benchmarks (between about 50 and 200

customers), the total time needed for each LS procedure is short. In this situation, no

pruning strategy is needed.

2. In any problem where a sorting strategy does not help to guide the LS within neighbour-

hood structures, a pruning strategy is also unhelpful.

3. When the solution space is very big but a sorting strategy fails, memory techniques

plus adaptive pruning rate can be applied to control exploration and exploitation in the
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(a)

(b) D-MABNS with different γ

Figure 8.15: Impact of neighbourhood pruning on PVRP benchmark p13. Graph (a) records the
changed fitness δ(f), and the number of solution examined before accepting the next solution,
for D-MABNS (γ = 0).

early and the later stages of the search process. The memory technique needs to record

potentially promising areas of the solution space, which have been cut off in the early

search.

4. When the solution space is big and the fitness distribution of many neighbourhood struc-

tures shows strong orderliness on some features, neighbourhood sorting and pruning bring

big benefits to the search process.

8.5.2.2 Comparing to other meta-heuristics

We compare our results with the state-of-the-art meta-heuristics and the best results were

achieved using VNSr(R) from Chapter 72. We test MAB based algorithms including the Ran

and D-MABNS with parameter settings {w = 400, RF = exp(a = 5), α = 0.8, λ = 0.7, γ =

2Compared to the version of VNSr(R) tested in Chapter 7, we improve its code implementation and rerun
the experiments with 10 repeats.
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(a) Relocated neighbourhood

(b) 3Opt neighbourhood

Figure 8.16: PVRP sorting effects: examples of current-solution neighbourhoods

0.001}. The experiments are designed to replicate benchmark conditions from Vidal et al.

(2012). In particular, the search is always terminated after a fixed amount of CPU time (Vidal

et al. (2012)). We record the average results of 10 repeats of each instance and compare them

against the best-found solutions. The average gap between our solution quality to the best-

found solutions are summarised in Table 8.4 and are presented in more detail in the Appendix

(Table 11.2). The best-known value for each problem instance is shown in bold.

From Table 8.4, hybrid-GA (Vidal et al. (2012)), which combines the population based re-

combination operators and LS techniques, achieves the best performance among all algorithms.

In addition, the specific design of infeasible solution management, population diversity and elite

individual management have all made great contributions to locating the promising start points

of successive LS procedures. Another successful development using hybridisation concept is

the hybrid record-to-record method (Gulczynski et al. (2011)). The authors iteratively solve a

customer reassignment problem using integer programming and improve the route length using

record-to-record heuristic. However, compared to other recent approaches, the hybrid record-

to-record takes almost double computational time. Parallel tabu (Cordeau and Maischberger

(2012)) takes the advantage of parallel computing and enhance its performance significantly

compared to its original development (Cordeau et al. (1997)).

In comparison, our two MAB-based algorithms achieve competitive results. On average,
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D-MABNS produces routes that are 1.7% longer than the best-known solutions. D-MABNS

has found 10 best solutions out of 42 tested instances and a new best solution for instance p04.

The routes are shown in the Appendix (Table 11.1).

Table 8.4: Summary of algorithm performance compared to the state-of-the-art meta-heuristics.
Since not every algorithm is tested on all instances, results are grouped into old and new data
set (Section 7.5.6)

Method Author
Average
CPU

gap over-
all

gap (old
data set)

gap (new
data set)

Record-to-
record

Chao et al. (1995) 20.33min - 2.72% -

Tabu search
Cordeau et al.
(1997)

4.28min 1.71% 1.59% 2.08%

Scatter
search

Alegre et al.
(2007)

39.93min - 1.38%

VNS
Hemmelmayr
et al. (2009)

3.34min 1.34% 1.40% 1.14%

Hybrid-
record-to-
record

Gulczynski et al.
(2011)

10.36min - 0.91% -

Hybrid-GA Vidal et al. (2012) 5.56min 0.09% 0.12% 0.0%

Parallel
tabu search

Cordeau and
Maischberger
(2012)

3.55min 0.23% 0.24% 0.20%

VNSr(R) Chapter 7 5.56min 1.72% 1.53% 2.40%

Ran Section 8.4.5.2 5.56min 1.56% 1.26% 2.63%
D-MABNS Section 8.3 5.56min 1.70% 1.37% 2.90%

Comparing the average results of D-MABNS with Ran, in 29 out of 41 tested instances,

Ran outperforms D-MABNS. Further analysis suggests that Ran reaches different local optima

more than D-MABNS within given CPU times. Consequently, it increases the chances of

finding better solutions. For GDMP, we found that the advantage of the pure random strategy

was lost for larger solution spaces (Section 8.4.5), and we might predict a similar result for

larger PVRP.

8.6 Conclusion

In this chapter, we introduce a new D-MABNS algorithm for our drainage system maintenance

problem. To test D-MABNS, we introduce 5 GDMP instances that were obtained from the data

of the real-world drainage system in Blackpool (Chapter 3). In order to solve this problem more

effectively, the D-MABNS utilises the orderliness property of the neighbourhood structures and

applies techniques, which focus the search in the promising areas of the solution space, such as

dynamic neighbourhood updating, feature sequential search and neighbourhood pruning. We

perform a comprehensive sensitivity analysis and gain insights into the relationship between
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FSS and neighbourhood pruning, showing that pruning is reliant on good sorting to gain big

advantages. Compared to the two hyperheuristic approaches, BEBO (Chapter 5) and VNSr(R)

(Chapter 7), D-MABNS achieves significantly better results in all the tested instances.

We then test our algorithm on 42 PVRP benchmark instances to compare its performance

with other heuristic approaches found in recent literature. Unlike GDMP, the PVRP neigh-

bourhood structures show no orderliness on the features that have been tested, which reduces

the impact of D-MABNS’s tricks during the search. However, D-MABNS still achieves very

competitive results. On average, D-MABNS achieves solutions within 1.7% of the best-known

solutions. After reviewing the techniques applied in the better performing algorithms, we

would like to improve our implementation of D-MABNS from the following perspectives in

future works: 1) allowing search to accept infeasible solutions; 2) enhance reinitialisation us-

ing recombination operators with the concept of elite solution management; 3) optimise code

implementation.

In part II, a variety of techniques have been investigated to enhance the heuristic search

algorithms for solving our large-scale combinatorial optimisation problem. We review existing

efficient search strategies (Chapter 6); deliver experimental analysis of various hyperheuristic

approaches (Chapter 7); propose a learning-based LS method (Chapter 8). According to the

experiments from both Chapter 7 and 8, we observe the preference of algorithms depending

on the problems and attempt to explain some of the behaviours. The major contribution is

building the understanding of relationship between problem characteristics and search methods.

Other researchers could use many of our advices presented in this part, when they design

heuristic methods for their problems. Indeed, to comprehensively understand the relation,

further systematic experiments should be designed using a lager variety of problems with more

distinctive characteristics.
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Part III

Large-scale Road Inspection

Problem
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Having considered modelling of the geographically distributed asset maintenance problem

(GDMP) and having investigated various GDMP solvers, this part of the thesis focuses on a

different problem, which is of another specific interest to Gaist Solutions Ltd. the problem of

road inspection.

Road inspection plays an important role in road management programmes. It provides the

up-to-date key information of road conditions, which helps decision making on maintenance

actions. Usually, road inspection is cyclically scheduled and done at a sufficient frequency. In

order to improve work efficiency, two branches of research have proved fruitful. The first one

is to optimise inspection frequency and policies based on the asset deterioration process (e.g.

Madanat and Ben-Akiva (1994); Smilowitz and Madanat (2000); Kallen and Van Noortwijk

(2006); Maji and Jha (2007)), and the second one is to optimise daily inspection routes with

time constraints (e.g. Jha et al. (2008, 2010)).

In this study, we consider a third avenue for optimisation by comparing two road inspection

strategic plans. Our business partner Gaist Solutions Ltd. plans to carry out a national-scale

road inspection. Vehicles capable of high-quality video recording will be used for road inspection

work. Two potential road inspection methods may be applied. First, using vehicles that can

only get video data from one side of a road so that every road needs to be visited bi-directionally.

Second, vehicles with more advanced equipment, which travel on one side of the road but

monitor both sides at the same time in one-pass. Our task is to solve both routing problems

in order to determine how much distance can be saved using one-pass inspection strategy in

comparison to a bi-directional approach, and in turn determine whether the additional cost of

one-pass equipment is justified.

It is worth noting here that there is little academic link to the work in parts I and II.

According to the problem analysis and theoretical proof, we model the road inspection problem

as an arc-routing problem the Chinese postman problem (CPP). The main contribution here is

to answer the above question based on thoughtful theoretical analysis and calculation. A well-

known exact solver for CPP is applied, which means an accurate analysis can be provided at

the stage. To solve the large-scale CPP, we propose a pre-processing method (graph reduction

strategy), which significantly reduces the computation time and allows analysis on previously-

unsolved large graphs.
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CHAPTER 9

A comparison of one-pass and bi-directional approaches

applied to large-scale road inspection

9.1 Introduction

In the UK, local government agencies have a duty to maintain roads for public utility and

safety. Road inspection is cyclically scheduled and done at a defined frequency, to support

decision making on road repair scheduling. Modern inspection uses vehicles equipped for high

quality video recording. The quality of recording is affected by obstructions such as parked

cars, and complex post-processing is required to extract suitable data on road condition. With

240,000 kilometres of road in the UK, efficiency of the inspection process has high priority.

We attempt to improve operational efficiency via the road inspection strategies. We inves-

tigate two strategies: a one-pass inspection, in which an inspection vehicle can monitor both

sides of a road in one traversal, and the more traditional bi-directional inspection, in which the

vehicle monitors only its near-side carriageway. Finding a suitable route is computationally

expensive for real-world road networks: Gaist’s network data for the UK cities of Blackpool,

Southend, Manchester, Stockport, Halton, Warrington, and for the rural county of Norfolk,

gives total road lengths of 515, 508, 1315, 945, 619, 879 and 26243 kilometres, respectively.

9.1.1 Road networks and representations

In the UK, local authorities are responsible for local road networks (excluding major trunk roads

and motorways). The local authority road networks are mostly designated as 1-lane, 2-lane,

3-lane and 4-lane single carriageways or 2-lane dual carriageways (with a central reservation).

We represent the road network as an undirected graph G(V,E). The vertices V represent

junctions, dead ends, bends and any data collection point identified in the original data. The

edges E represent roads that link the vertices. As Figures 9.1 and 9.2 show, 1-lane, 2-lane

and 3-lane single carriageways can be represented by a single undirected edge. In the 4-lane

single carriageway and dual carriageway situations, we transform the road into two parallel

undirected edges. A crescent road is transformed into a loop (see Figure 9.3) and a cul-de-sac

is represented as an one-degree vertex (see Figure 9.4).
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(a) 1-lane single carriage-
way

(b) 2-lane single carriage-
way

(c) 3-lane single carriage-
way

(d) Graph representation

Figure 9.1: Common road types in urban areas and the corresponding graph representation

(a) 4-lane single carriage-
way

(b) 2-lane dual carriageway (c) Graph representation

Figure 9.2: 4-lane single carriageway, 2-lane dual carriageway and the corresponding graph
representation

Our data comprises basic road information from seven UK local councils that are Gaist’s

clients. Because the data was not collected for network analysis, there are some accidental

omissions and other issues to be addressed. To clean the data, all intersections have to be

explicitly labelled as vertices.

The pre-processing required for any inspection route analysis is as follows. From consider-

ation of the original data, we define ε = 3 metres.

• The first change made to the data is to remove 2-degree vertices, since these represent a

bend in a road, rather than an intersection, and thus have no impact on the construction

or distance of inspection tours. For all two-degree vertices, vk, e(vi, vk) and e(vk, vj) are

replaced by a single edge, e(vi, vj), with length l((vi, vj)) = l((vi, vk)) + l((vk, vj)).

• We assume that an intersection has been omitted if the data indicates that two roads

terminate close together. Thus, where the distance between two one-degree vertices is

smaller than some ε, the vertices are merged.

• Similarly, we assume that a road that terminates very close to another road is an omitted

intersection. Thus, where the distance from a one-degree vertex vk to an edge e(vi, vj) is

less than ε, the edge e(vi, vj) is replaced by two new edges e(vi, vk) and e(vk, vj).

(a) Crescents (b) Graph represen-
tation

Figure 9.3: Crescents and the corresponding graph representation
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(a) Bulb (b) Dead-end (c) Representa-
tion

Figure 9.4: Cul-de-sac and the corresponding graph representation

Table 9.1 summarises the vertex degree-distribution of the seven datasets that we have

available, after data cleaning. As we can see, the majority of vertices in road maps have degree

two, so their removal significantly reduces the size of the graph for each network.

Table 9.1: Distribution of vertex degrees, and total number of vertices before and after removal
of 2-degree vertices for seven local authority road networks in the UK. Road network from left
to right– B: Blackpool; SO: Southend; M: Manchester; ST:Stockport; H:Halton; W:Warrington;
N: Norfolk

B SO M ST H W N

Vertex
total 26302 22864 45408 44470 29610 24518 549345

Degree
1 3.40% 5.60% 8.32% 6.12% 6.08% 10.68% 2.62%
2 80.60% 80.00% 70.63% 80.51% 83.80% 69.53% 91.82%
3 13.10% 12.97% 19.75% 12.31% 9.72% 19.61% 5.33%
4 2.80% 1.42% 1.26% 1.03% 0.36% 0.18% 0.22%
5 0.03% 0.02% 0.04% 0.03% 0.017% - -
6 0.01% - - - - - -

less
degree-2s

5103 4571 13337 8665 4796 7471 44912

9.1.2 Analysis of bi-directional and one-pass approaches

The inspection route for a one-sided inspection vehicle – which must pass along every road twice

to monitor both sides – comprises a graph in which every edge is replaced by two arcs, so that

all the vertices in the resulting digraph have equal in-degree and out-degree. The optimum

route for inspection is an Euler tour of the resulting digraph and the optimum distance is

given by equation 9.1 (Even (2011)), in which l(e) is the travelled length of the road segment

represented by edge e.

l(bi-directional) = 2
∑
e∈E

l(e) (9.1)

In the one-pass road inspection case, each edge in the graph has to be visited at least once.

This problem can be modelled as the Chinese postman problem (CPP) and the total travel
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distance is the length of Chinese Postman Tour (CPT) (Guan (1962); Thimbleby (2003)).

l(one-pass) = lCPT (9.2)

Lemma 9.1. If a graph G(V,E) is Eulerian and edge {v, w} appears twice in E, then there is

an Euler tour of G where {v, w} is travelled in both directions {v, w} and {w, v}.

(a) Suppose that there is an Euler tour
A=v − w − x1 − x2 − ... − xn − v − w −
y1 − y2 − ... − yn − v, where edge (v, w) is
travelled in the same direction both times.

(b) Then tour B=v− yn− yn−1− ...− y1−
w − x1 − x2 − ...xn − v is an Euler tour in
the remaining Eulerian graph after remove
the parallel edges {v, w} and {w, v}.

(c) By adding a travelling path v − w − v to the beginning of tour B, we have get another
Euler tour v − w − v − yn − yn−1 − ... − y1 − w − x1 − x2 − ...xn − v, where edge (v, w) is
travelled in both directions in the original graph.

Figure 9.5: Proof of Lemma 9.1

Since we generate an Eulerian graph from a given road network, Lemma 9.1 says that we

can always find a CPT that passes complementary directions of parallel edges, and which is

thus valid for 4-lane single and dual carriageways (e.g. Figure 9.2).

One-way streets make up a very small proportion of the total road distance in our networks,

so we make the assumption that inspection vehicles can traverse roads in either direction, and

that the effect of data-cleaning or data errors is similar in both the one-pass and bi-directional

approaches, and thus has minimal effect on our analysis.

9.1.3 Solution of the Chinese Postman Problem and the challenge of large-

scale problems

The optimal solution to the one-pass inspection problem is a CPT, in which a vehicle must visit

every edge at least once whilst travelling the least overall distance (Guan (1962); Thimbleby

(2003)).

For a general undirected graph, a CPT is derivable by adding the smallest possible number

of edges to construct an Eulerian graph and finding an Eulerian tour based on it.
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Edmonds and Johnson (1973) provide a widely-used exact CPP solution that is polynomial

on the number of vertices and edges, as follows:

1. From an undirected graph G(V,E), find the shortest path between all pairs of odd-degree

vertices.

2. Find the minimum-cost perfect matching, M , of odd-degree vertices using the blossom

algorithm (Edmonds (1965); Edmonds and Johnson (1973)).

3. Add extra edges that connect all the matched pairs of vertices through the shortest path

in G.

4. Find an Eulerian tour in the resulting Eulerian graph.

Then, the length, lCPT , of the identified CPT is:

lCPT =
∑
e∈E

l(e) + l(M) (9.3)

The approach of Edmonds and Johnson (1973) does not scale well to large graphs, such as

our road network representations. The first step of the approach requires calculation of the

shortest path in G between every pair of odd-degree vertices. Floyd (1962) and others developed

an algorithm of complexity O(n3), where n is the number of vertices, now known as the Floyd-

Warshall algorithm (FW), whereas the most efficient implementations of Dijkstra’s algorithm

(Dijkstra (1959)), a single-source shortest-path algorithm, can achieve O(m + n log n), where

m is the number of edges (Fredman and Tarjan (1987)). There is ongoing debate over the most

efficient way to find the all-pairs shortest path in large-scale sparse graphs (Solomonik et al.

(2013)); tests on our graphs show that FW systematically outperforms the other algorithms.

The second step of the approach by Edmonds and Johnson (1973), minimum-cost perfect

matching, is also computationally expensive. The best-known implementation of the blossom

algorithm achieves O(n(m + n log n)) by Gabow (1990). More recently, Kolmogorov (2009)

published an executable implementation which achieves time complexity of O(n2m) – again,

the complexity of the algorithm is dependent on the number of edges and vertices in the graph.

This matching strategy is also used by Christofides (1976b) for the travelling salesman problem

giving a worst-case ratio of 3/2 of the optimum tour length.

There are several efficient approaches for identification of an Euler tour, required for both

one-pass and two-pass inspection routing. Fleury (1883) proposes the best-known algorithm,

of order O(m2). However, we use another algorithm of order O(m), proposed by Hierholzer

and Wiener (1873).

Apart from Edmonds’ CPP solution, Laporte (1997) introduces methods of transforming

an arc routing problem into an equivalent TSP. This idea is also shown by Irnich (2008) to
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solve a large-scale real-world postman problem with complex constraints. Heuristics for the

TSP can then be used to solve the transformed CPP problems. As a result, no optimal result

is guaranteed to be found.

To analyse our large-scale real-world road inspection networks, we firstly propose a novel

graph reduction process before finding the CPT (Section 9.2). Section 9.3 justifies the contribu-

tion of our graph reduction pre-processing and compares one-pass and bi-directional inspection

strategies for the seven local authority road networks. Section 9.4 further tests our approach

on three groups of simulated scenarios. The estimation of using these two inspection strate-

gies on the entire UK road networks is presented in Section 9.5. Section 9.6 summarise the

contributions of this chapter.

9.2 Finding Optimal Inspection Routes

In this section, we describe how we apply the 4-step approach outlined above to our road

network graphs. However, our first step is to reduce the graph, to make it more amenable to

computation.

9.2.1 Graph Reduction

Figure 9.6: Systematic reduction of an undirected graph. (a) the graph after removal of degree-2
vertices, with the matching Modd shown in dashed lines. (b) the graph after removal of degree-1
vertices, with their originally connected edges recorded in E∗. (c)-(g) the results of repeating
these steps – here, the result is a null graph. White nodes have degree 1; striped nodes have
even degree and black nodes have odd degree.

Our graph reduction applies graph contraction techniques as used in graph minor theory

(Chartrand and Oellermann (1993); Lovász (2006)). Edge contraction is a fundamental oper-

ation in graph minors which deletes an edge from a graph G and merges the two end points.

Here, we propose a novel graph reduction method to decrease the calculations time whilst

maintaining the necessary characteristics of the original graph to reconstruct a CPT. After the
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data preparation described in the previous section, each road network is represented as a finite

undirected graph which contains parallel edges and self-loops. All degree-2 vertices have been

removed.

Let Veven and Vodd describe the even-degree vertex set and odd-degree vertex set, respec-

tively, of our graph G(V,E). l(vi, vj) represents the length of the shortest edge between vertices

vi and vj . If there is no direct connection between vi and vj , l(vi, vj) =∞. For all vertices vi,

l(vi, vi) = 0. The shortest path between vi and vj in the graph G is represented as p(vi, vj).

Our approach deletes vertices systematically, but records the length and location of removed

edges in a structure, E∗. Figure 9.6 shows how this works on a stylised representation of a

road network graph.

We make the following observations.

1. Deleting a self-loop from a graph does not change the parity of a vertex’s degree.

2. The shortest path p(vi, vj) between vertex vi and vertex vj does not include any self-loops.

3. The paths P of the minimum cost matching M(Vodd) include all the edges connected to

degree one vertices. In other words, if you reach a dead end, then you have to get out

the same way.

4. If a shortest path between vertex vi and vj is p(vi, vj) = (vi, vi+1, vi+2, ..., vj), then the

shortest path between vi+1 and vj is p(vi+1, vj) = (vi+1, vi+2, ..., vj).

5. Deleting a degree-1 vertex and its adjacent edge, the total number of odd degree vertices

is either unchanged or reduced by 2.

From these observations, the following two deductions can be made.

1: Deleting a self-loop (vi, vi) from a graph G will not change the paths in the minimum

perfect matching M(Vodd) of an undirected graph.

2: There is a path set P of the matching M(Vodd) of the original graph G (as shown by

dashed lines in panel (a) of Figure 9.6) that equals the deleted edges E∗ connected to

one-degree vertices (as shown by the E∗ in Figure 9.6(b)), plus a path set P ′ in the new

matching M ′(Vodd) of the simplified graph G′(shown in Figure 9.6(b) as dashed lines),

such that, P = E∗ ∪ P ′.

Having reduced our road network graphs, we then apply the 4-step process, as follows.

Step 1: Finding the shortest distance between all odd-degree vertices

Our graph reduction process results in a simplified graph G′, and a record of all the deleted

edges which were connected to one-degree vertices in the reduction process, E∗.
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To find the shortest distance between all pairs of odd-degree vertices of graph G′, we use

Floyd-Warshall (FW) algorithm (Floyd (1962)). The FW algorithm’s complexity is worst-case

O(|V |3), so reducing the number of vertices in the graph is advantageous. We find that, after

applying the graph reduction process above, there are still be many even-degree vertices in

G′, and the matching process does not need these vertices. Therefore, before calculating the

shortest path, we can consider deleting these even-degree vertices.

There are many approaches to even-degree vertex deletion. Our preferred approach is

Algorithm 9.2.1, which detects and deletes all even-degree vertices in G′ without affecting the

shortest connection and distance between other vertices. Deleting vertices with degree bigger

than three may increase calculation complexity and the total number of edges in the graph.

However, even where the number of edges increases, the total number of vertices is reduced.

The time complexity of deleting each even-degree vertex vi ∈ Veven is ((m(vi)(m(vi) − 1)) / 2),

where m(vi) is the number of edges connected to vertex vi.

Having performed the additional reductions using Algorithm 9.2.1, we use the FW to cal-

culate the shortest path between all vertices remaining in the graph.

Algorithm 9.2.1 Even-degree vertex selection and deletion. V and E are the sets of all
vertices and all edges in a given graph G.

for each vertex vi ∈ Veven do
for each pair of edges ep(vk, vi) ∈ E and eq(vm, vi) ∈ E do

if l(ep) + l(eq) < l(vk, vm) then
generate a new edge e′(vk, vm) with cost l(e′) = l(ep) + l(eq)
if e(vk, vm) ∈ E then

replace the edge between vk and vm with the new edge e′(vk, vm)
else

add the edge e′(vk, vm) between vk and vm
end if

end if
end for
delete edges ep(vk, vi) and eq(vm, vi)
delete vertex vi

end for

Step 2: Minimum-cost perfect matching

The standard blossom algorithm (Edmonds and Johnson (1973)) finds the minimum-cost per-

fect matching, M(V ′odd) of graph G′.

The length of the minimum perfect matchings is represented as lM(V ′odd). According to

Deduction 2 and Equation 9.3, the length lCPT of the CPT of the original graph G is:

lCPT =
∑
e∈E

l(e) +
∑
e∈E∗

l(e) + lM(V ′odd) (9.4)
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Step 3: Construct the Eulerian graph

Using Deduction 2 to construct an Eulerian graph from the original graph G, we only need to

add edges recorded in E∗ and M(V ′odd) to the original graph G.

Step 4: Finding the CPT in original graph G

From the graph produced in step 3, the Euler tour can be found by applying the algorithm

proposed by Hierholzer and Wiener (1873).

To generate a CPT in a real world situation, when Hierholzer’s algorithm meets a vertex

connected to 4-lane single carriageway or dual carriageway edges, priority is given to the edge

whose underlying direction is away from this vertex.

9.3 Experimental set-up and results

In order to justify the impact of our graph reduction process, we firstly introduce three heuristic

methods to solve the CPP. We then run all three approaches plus the 4-step approach of

Edmonds and Johnson (1973) on the road network graphs, firstly without our graph reduction,

then on the graphs after our graph reduction method (Section 9.2.1), and finally on the further

reduced graph with all even-degree vertices removed before the shortest distance calculation.

Our heuristic approaches focus on the matching process (Step2 ) and retain all the other CPP

solving steps of Edmonds’ method. Blossom and the first two heuristics labelled greedy and GLS

(greedy method with local search) require the FW calculation of shortest paths between odd-

degree vertex pairs. The final heuristic is a breadth-first-search (labelled BFS) for matching,

and does not need FW to run first. The combinations of CPP solvers and graphs are labelled

m1 . . .m12, as shown in table 9.2.

Table 9.2: Summary of the three graphs and four methods applied. Cells (m1 - m12) provide
the key to labelling of the later results and graphs. FW = Floyd-Warshall Algorighm to find
shortest distance between vertex pairs, step 1. blossom, greedy, GLS and BFS are tested in the
matching process, step 2. GR = Graph reconstruction, step 3. HA = Hierholzer Algorithm to
find the CPT, step 4.

pre-processing Steps 1-4

Graph FW, blossom,
GR, HA

FW, Greedy,
GR, HA

FW, GLS,
GR, HA

BFS,
GR, HA

Road Network with 2-
degree vertices removed

m1 m2 m3 m4

.. and reduction applied
(Section 9.2.1)

m5 m6 m7 m8

.. and all even degree ver-
tices removed

m9 m10 m11 m12
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The base-case minimum-cost matching is calculated using the implementation by Kol-

mogorov (2009) of the blossom algorithm. We now introduce the three heuristics that are

proposed in place of the blossom matching algorithm.

Greedy method (greedy): The greedy method is a heuristic that systematically constructs

a matching where shortest distances between pairs of vertices are known, as described in algo-

rithm 9.3.1. The algorithm is based on those by Kurtzberg (1962) and Reingold and Tarjan

(1981).

Greedy method + local search (GLS): GLS attempts to improve the result of the greedy

method by following algorithm 9.3.1 with a greedy first improvement heuristic, shown in algo-

rithm 9.3.2.

Algorithm 9.3.1 Greedy construction for matching

V L is a list contains all the vertices, vi in a given graph
while V L contains at least two vertices do

Choose the pair of vertices with shortest distance (vi, vj) ∈ V L
Add (vi, vj) to the matching M
delete vi, vj from V L

end while
Return M

Algorithm 9.3.2 Greedy improvement algorithm, used to improve the matching result of the
construction approach, algorithm 9.3.1 above. l(mi) is the distance between the two vertices
in the matching mi.

improved=true;
while improved do

improve=false;
for Every pair of matchings mi, mj ∈ M do

Generate new matchings mk,ml by exchanging vertices between mi and mj

if l(mk) + l(ml) < l(mi) + l(mj) then
Replace mi and mj by mk and ml;
improved = true;
break;

end if
end for

end while
Return M

Breadth first search (BFS): BFS is a basic search: each unmatched odd-degree vertex vi

in graph G is the root point of a BFS to find the next unmatched odd-degree vertex vj . Then

two vertices vj and vi are a matching pair and the path from vi to vj in the BFS tree is the

matching path. The BFS terminates when there are no unmatched odd-degree vertices left.
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9.3.1 Results Comparison

Our experiments allow us to address two questions:

• is there a computationally-efficient (in terms of CPU time) solution to the CPP on large

scale general graphs?

• how much distance can be saved using one-pass inspection strategy in comparison to a

bi-directional approach?

The second question is of particular importance to the local authorities concerned.

To compare the computation time required to identify a CPT (inspection route) for each of

the different graphs and variant approaches, the experiments were each running on a standard

desktop PC: Intel i7-3770 CPU at 3.40 GHz with 24GB memory under the Windows 7 operation

system.

The exact methods using blossom algorithm in the matching process achieve the optimal

CPP tour, whereas heuristic based methods can only find near-optimal solutions. Therefore,

we analyse question two using the results generated by the exact methods. Equation 9.5 is

applied to normalise the difference and express it as a percentage distance saving:

saving =
l(bi-directional)− l(one-pass)

l(bi-directional)
∗ 100% (9.5)

On our chosen platform, the 12 experimental set-ups are run for each of the local authority

road network graphs except Norfolk. The graph representation of the Norfolk road network

is too large to process without our novel graph reduction step, and we have only applied the

exact method from the smaller networks to that for Norfolk.

9.3.1.1 CPU time comparisons

Figure 9.7 plots the CPU time taken. For each road network graph, the graph reduction and

graph reconstruction times are negligible, and do not show up on this scale.

In all road networks, the methods applying graph reduction (m5 to m12) shows much lower

overall CPU time, which demonstrates the importance of our graph reduction approach on

graphs of this scale. After graph reduction, the exact methods can produce the CPT faster

than any tested methods directly running on the original graph in all cases.

Table 9.3 gives numerical results for the blossom algorithm experiments on the three forms

of graph for all seven local authority road networks (except for the un-reduced Norfolk graph).

The numerical results again emphasise the reductions in CPU time due to graph reduction.
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Figure 9.7: Results of the 12 methods for the six road networks. For each experiment, the bar
shows the CPU time taken, with shading showing the CPU usage of each algorithm (graph
reduction and graph reconstruction take negligible time and are not visible in the plots). m1
to m4 are tested on the original graphs; m5-m8 are tested on the reduced graphs; m9-m12 are
tested on further reduced graphs that without any even degree vertices.

163



Chapter 9. Efficient road inspection 164

Table 9.3: CPU time taken to calculate the CPT of each road network using the blossom
algorithm for matching. The lower right panel gives the total CPU time for each road network
for each experiment. The columns are as follows: n is the number of vertices (also shown
in Table 9.1), and m the number of edges in the graphs after data cleaning, etc. RT is the
CPU time for graph reduction: no reduction, reduction as described in section 2.1, and the
additional reduction in Algorithm 9.2.1, respectively. FW is CPU time for the Floyd-Warshall
algorithm. MT is the CPU time for the blossom matching algorithm. CT is the CPU time to
construct the final graph. CPT is the CPU time to extract the final inspection route using the
Hierholzer algorithm.

Blackpool (B) Southend (SO)
n m CPU (s) n m CPU (s)

RT FW MT CT CPT RT FW MT CT CPT
m1 5103 7124 0 143.32 28.97 0.016 0.187 4571 5738 0 189.84 31.14 0.001 0.202
m5 3398 5419 0.14 45.54 11.11 0.016 0.234 2016 3162 0.14 16.05 4.26 0.001 0.203
m9 2772 10803 0.51 28.84 10.34 0.016 0.016 1746 5922 0.28 10.51 4.25 0.001 0.202

Halton (H) Stockport (ST)
n m CPU (s) n m CPU (s)

RT FW MT CT CPT RT FW MT CT CPT
m1 4796 5430 0 134.38 39.44 0.002 0.187 8665 10482 0 910.62 114.21 0.000 0.671
m5 1211 1852 0.15 2.96 1.97 0.001 0.218 3277 5063 0.45 55.91 12.46 0.006 0.826
m9 1148 1970 0.16 2.53 1.96 0.002 0.218 3004 5662 0.53 40.86 11.79 0.003 0.858

Warrington (W) Manchester (M)
n m CPU (s) CPU (s)

RT FW MT CT CPT n m RT FW MT CT CPT
m1 7471 8556 0 343.18 95.32 0.001 0.499 13337 16500 0 4438.04 355.83 0.013 1.58
m5 2136 3218 0.29 10.31 5.84 0.000 0.561 5842 8949 1.02 369.71 47.75 0.015 1.79
m9 2108 3265 0.31 9.78 5.83 0.001 0.561 5486 9622 1.12 306.29 46.71 0.015 1.67

Norfolk (N) Summary
n m CPU (s) Total CPU(s)

RT FW MT CT CPT B SO H ST W M N
m1 44912 53482 0 - - - - 172 221 174 1025 439 4795 -
m5 15647 23904 18.27 4977.19 5499.49 0.171 34.523 57 21 5 70 17 420 10530
m9 14796 26487 19.66 4227.01 4759.01 0.182 34.881 49 15 5 54 16 356 9041

Some explanation is needed of an apparent anomaly in the Blackpool data. In the top

left panel of Table 9.3, the number of edges (column m) is significantly higher for the fully-

reduced graph (third row) than for the unreduced or partially reduced graphs. This arises

from the removal of all even vertices in this network graph. In the Blackpool network, almost

three percent of vertices have degree 4 or above, whereas no other network has more than

1.5% (Table 9.1). Whilst removal of degree-one and degree-two vertices always decreases graph

complexity in terms of both the number of vertices and edges, removal of higher-degree vertices

reintroduces significantly more edges. Fortunately, the CPU-hungry algorithms depend more

strongly on the number of vertices.

9.3.1.2 Distance comparisons

To compare totally distance vehicles should travel using one-pass versus bi-directional road

inspection approach, table 9.4 presents details of distance savings in these experiments. The

distance saving for the one-pass inspection is between 26% and 35%.
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Table 9.4: Distance and distance saving of the CPT one-pass route, compared to the bi-
directional route monitoring approach.

Bi-directional One-pass Saving Average
(Euler Tour) (CPT) distance (equation 9.5) degree

Blackpool 1031km 671km 360km 34.86% 2.79
Southend 1016km 676km 340km 33.46% 2.51

Manchester 2631km 1839km 792km 30.10% 2.47
Stockport 1891km 1369km 522km 27.57% 2.42
Norfolk 26234km 18268km 7966km 30.36% 2.39
Halton 1239km 917km 322km 26.03% 2.26

Warrington 1758km 1300km 458km 26.00% 2.29

(a) Southend (b) Southend, reduced

(c) Warrington (d) Warrington, reduced

Figure 9.8: Original maps and reduced graphs for Southend and Warrington road networks,
illustrating grid-like and tree-like road networks.

Investigation of the differences in distance saved shows that, in addition to the added

complexity of networks with high-degree vertices (noted above, and shown in the final column

of Table 9.4), these reflect different road network topologies. Blackpool, Southend, Manchester

and Norfolk, can be characterised as having predominantly grid-structured networks, which

are conducive to efficient one-pass monitoring. By contrast, Warrington and Halton have

predominantly tree-structured road networks which inevitably leads to visiting more streets

twice, even in the one-pass case. To illustrate this, Figure 9.8 gives the original and reduced-

graph networks for Southend and Warrington.
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9.4 Simulated Data experiments

Our analyses of graphs representing real road network data lead to striking conclusions about

the distance saving of one-pass, as compared to bi-directional, road inspection strategies. Al-

though savings vary by about 10 percentage points across different road networks, the distance

savings were consistently above 26%.

To explore the interaction between graph layout and distance savings, we conducted a set of

experiments on randomly generated graphs using the blossom-based approach that was shown

to be optimal above.

Table 9.5: Vertex degree distributions for generated graphs. All generated graphs have 1000
vertices and edges of length 1 only.

parameters
vertex degree average degree

Graph structures 1 2 3 4 5 initial no d-2

degree distribution
match:
g1 15% 70% 12% 3% - 2.03 2.1
g2 10% 70% 15% 5% - 2.15 2.5
g3 5% 80% 10% 5% - 2.15 2.75

degree distribution with
no degree-2 vertices:
g4 35% - 60% 5% - 2.35 2.35
g5 35% - 50% 15% - 2.45 2.45
g6 35% - 40% 25% - 2.55 2.55
g7 35% - 40% 10% 15% 2.7 2.7
g8 35% - 40% 5% 20% 2.75 2.75

dominated by high-
degree :
g9 20% - 15% 60% 5% 3.3 3.3
g10 20% - 15% 5% 60% 3.85 3.85

Random graphs were created using an algorithm proposed by Blitzstein and Diaconis (2011).

Graphs are created with a fixed number of vertices (we choose 1000) to specified vertex-degree

distributions. Our vertex-degree distribution parameters are shown in Table 9.5, which also

summarises the average vertex degree of the generated graphs, before and after the initial

removal of degree-two vertices. Three parameter settings of random graphs (g1 – g3) are

generated with similar vertex-degree distribution to the graphs representing our real-world

road networks. A further five parameter settings of random graphs (g4 – g8) have similar

vertex-degree distribution to the graphs of real-world road networks after cleaning to remove

degree-two vertices. There are also two parameter settings of random graphs that are dominated

by degree-four (g9) and degree-five (g10) vertices. In the random generation, all edge lengths are

166



Chapter 9. Efficient road inspection 167

set to one, and no attempt is made to generate graphs with particular structural characteristic

(grid-like, tree-like). Our experiments focus on the generalisation of the influence of vertex

degree, only.

For each group of graphs, we run these three sets of experiments with progressively greater

reductions, dictated by our data cleaning and graph reduction approach to the road network

graphs: 1) data cleaning to remove degree-two vertices, 2) graph reduction to remove all degree-

one and degree-two vertices, and 3) further reduction to remove all even-degree vertices. For

each experiment, we report the average of 30 runs, a number selected to give acceptable total

run time but a suitably-low statistical error. Here, the approach that applies blossom algorithm

in the matching process is used.

9.4.1 CPU time results

Table 9.6 presents details of the CPU time taken (using the computational platform described

in Section 9.3.1) for the overall CPT identification process (vertex-pair distances using FW,

blossom matching, graph reconstruction and CPT identification), and then for the three levels

of data cleaning and graph reduction, on each of the 10 types of graph.

Each graph reduction makes a big contribution to CPU time reduction. The results for the

first group of graphs, those generated to match the vertex degree distribution of the complete

road network graphs, shows the importance of removing degree-two vertices in this respect.

A further large time saving occurs when removing degree-one vertices – from Table 9.6 we

can see that these make up 50% of the vertices in the example g1 graph after removal of

the degree-two vertices. Comparing the improvement in CPU times between the full graph

reduction (last column of Table 9.6) and the data-cleaning reduction of removing only degree

two-vertices (middle column total), the results for this first group of graphs show CPU time

savings of 95.5%, 90.3% and 78.5%, respectively.

The graphs in group g4 – g8 (and, indeed, g9 and g10) are generated without degree-two

vertices. For these graphs, the graph reduction steps also show a very large CPU time reduction

over the un-reduced time.

For the graphs dominated by higher-degree vertices, g9 and g10, the results again show that

graph reduction leads to time reductions, but, for g9 which is dominated by degree-four vertices

(60% of all vertices), CPT extraction with removal of all even vertices is almost three times the

CPU time for just removing degree-one vertices, and somewhat greater than the CPU time for

cleaned graphs with neither subsequent reduction step. In this case, the last column of Table

9.6 shows that there is a very large CPU time overhead for deleting the significant number

of degree-four vertices and any other higher even-degree vertices. In contrast, the graphs

dominated by degree-five vertices, g10, show a pattern that is consistent with the graphs that
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Table 9.6: CPU time for CPT tour extraction on generated random graphs g1 – g10, showing
the effect of graph reductions. Lowest overall CPU times for each graph type are in emboldened.

CPU(ms)
Graph FW, blossom removing and removing and removing
structure GR, HA degree 2 degree 1 all even degree

reduction total reduction total reduction total
g1 19691.82 10.66 577.56 11.61 29.49 12.07 25.91
g2 19616.67 10.21 568.72 11.36 86.71 12.93 54.86
g3 19522.89 11.30 183.39 11.75 60.01 15.18 39.37
g4 20464.62 - - 6.34 1831.37 7.76 1436.3
g5 20312.60 - - 6.22 2086.82 14.64 1062.11
g6 20582.34 - - 5.55 2528.90 863.95 1666.97
g7 20433.91 - - 4.88 2780.43 13.07 1414.97
g8 20359.70 - - 4.87 2810.04 10.99 1622.76
g9 20339.90 - - 3.88 8468.91 248918.2 249369.4
g10 20407.10 - - 3.68 9209.61 17.08 4992.87

are similar to the real road network graphs.

Further analysis of specific graph results shows how these CPU time savings arise, since the

FW and the blossom matching process are the most CPU-intensive parts of the CPT extraction.

Table 9.7: Degree distribution after each graph reduction for a typical g1 graph

Vertex Degree Total Vertices

1 2 3 4
Original Graph 15% 70% 12% 3% 1000

Delete
degree 2

50% - 40% 10% 300

Delete
degree 1,2

- - 78% 22% 84

Delete
degree 1,even

- - - - 66

The complexity of FW is dependent on the number of vertices in the graph. Table 9.7

shows that degree-two removal (data cleaning) removes 70% of vertices, and subsequent graph

reduction reduces 300 vertices successively to 84 then 66 vertices on which to run FW. It is the

odd-degree vertices that influence the CPU time of blossom algorithm matching (step 2) – there

are 270 odd-degree vertices in this example of a g1 graph, but we have the much smaller number,

66, of odd-degree vertices after removal of degree-one and all even-degree vertices. Thus we can

conclude that the graph reduction contributes both to the reduced running time of the FW,

shortest-path-between-pairs calculation, and to the reduced running time of matching process.
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9.4.2 Distance saving results

Figure 9.9 shows the average distance savings (calculated using equation 9.5) and variances

about the mean from our 30-run sets. As in the road network graphs, the greatest distance

savings are associated with higher average degree graphs. The pattern also shows within groups

of graphs with similar degree distribution (identified by shading in Figure 9.9).
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Figure 9.9: Distance saving (equation 9.5) for the one-pass route compared to bi-directional
routing on the randomly generated graphs g1 – g12. For graph characteristics, see 9.5. Numbers
in brackets are the average vertex degree for that graph. Give 95% error bars

These results on randomly generated graphs support our general observation of significant

distance savings for a one-pass CPT over a bi-directional inspection tour, even though our

generated graphs ignore the impact of different graph topologies and edge lengths. The only

distance saving that is worse than the 26%-plus savings on the road network graphs is for g1,

those graphs that have an average degree of close to two before and after removal of degree-two

nodes. Comparing to other graphs, g1 graphs also have the highest proportions of degree-

one vertices after data cleaning (removing degree-two vertices) – dead-ends that have to be

traversed twice in order to continue a tour.

9.5 Estimated cost savings of one-pass road monitoring

In co-operation with our business partner, Gaist Solutions Ltd., we can estimate the national

savings of the one-pass strategy. Across all the results for the seven UK local authority road

networks, we find a distance-saving of roughly 30%. If we assume that the seven case studies

are typical of the UK, then we can use this to estimate the total annual saving for UK local

authority spending on road inspection using a one-pass strategy. We use published data,

rounded to avoid a false appearance of precision in the estimates.

The whole UK road network under local authority control (i.e. without trunk roads and

motorways) is roughly 240,000 kilometres (Murphy (2014)), broken down to 30,000 km of major

roads and 210,000 km of minor roads. The UK highway management authority states that road
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inspection should cover all major and about one-third of minor roads each year (Department

for Transport (2005)).

Extrapolating from our seven examples, we can estimate that a bi-directional strategy

requires annual inspection route distances totalling roughly 60,000 km of major roads (twice

the total distance) and 140,000 km minor roads (twice the total distance of one-third of the

routes each year).

If a one-pass strategy results in a 30% distance saving, then the inspection route distance

reduction would be roughly 18,000 km for major roads and 42,000 km for minor roads. Ac-

cording to the cost information provided by our industry partner, Gaist, we can estimate a cost

saving using a linear function that includes labour, petrol, equipment and vehicle maintenance

costs. This gives an approximate cost of £30 per km of major road and £90 per km of minor

road. The cost is higher for minor roads because running speed is lower, and there are more

likely to be obstructions and blockages. We can therefore tentatively suggest an annual saving

across all UK local authorities of 30 ∗ 18000 + 90 ∗ 42000 = £4.32 million.

9.6 Conclusion

This chapter explores the potential benefits for road inspection of using inspection vehicles

that can collect both side of road-lane information of a single carriageway in one traversal, as

opposed to more traditional single-sided monitoring that has to use a bi-directional strategy

to monitor every road.

By making various assumptions, we can systematically clean the map-based route data

to replace omitted intersections. We create road network graphs from the seven UK local

authority road network data sets, cleaning this data to remove degree-two vertices that simply

record bends in the road. A novel contribution of our work is to introduce graph reduction

techniques. It is notably helpful on sparse graph like real-world road networks; even the graph

of a UK county road network is amenable to CPT route calculation on a standard PC within

reasonable CPU time. For road networks in residential areas, the reduction helps to manage

the many branch roads, close road and culde-sacs which lead to complex graph structures.

Similar to the drainage system maintenance study (Part I), once again, the real-world

problem study shows the necessary of data pre-processing for the use of real data, to fit specific

analysis purpose. Further more, to deal with large scale problems, experiences from solving

the drainage system maintenance and the road inspection demonstrate that it is worth a while

of designing data simplification and problem size reduction before solving the problem.

Comparing to heuristic based solvers studied in previous chapters and applied for the large

scale drainage system maintenance problem (Chapter 5), it is worth noting that an exactly CPP

solver is applied in this chapter to deliver successive analysis. The standard CPP is solvable
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in polynomial time and there is an efficient exact solver (Edmonds’ solution) for problems at

the scale that we are dealing with. Our experimental results also support the effectiveness of

Edmonds’ solution compared to other simple heuristics.

We have also presented initial results on randomly generated graphs that allow us to identify

what sorts of road network graphs generate most savings – CPU time use is related to the

number of vertices in graphs, but the cost of graph reduction exceeds that saved on computation

in the pathological case where most vertices are of degree-four. In this situation, we can apply

only the process of degree-1 and degree-2 removing (Section 9.2.1).

In general, road network results show that the greater average degree a graph has, the

greater the route distance savings that can be generated. The results also show some influence

from graph structure, with better improvements in grid-like structures than tree-like structures.

We present conclusive evidence that the one-pass approach offers significant savings over

the bi-directional approach to road inspection. This assumes that the effects of data cleaning

(which may wrongly insert new intersections, and may not be able to identify some missing

road sections) are similar on both the one-pass and bi-directional tour calculations.

In terms of the answer to the question from Gaist, at this stage, we have an overview of

how much cost saving could be made by using a one-pass inspection strategy instead of a bi-

directional strategy. Gaist is now using our approach, including graph reduction in planning its

national scale road inspection programme. However, there are more practical issues to address

in future works, such as the number of one-pass inspection vehicles required to inspect the

network, and identification of optimal starting points for each vehicle tour.
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Thesis conclusions and future work

This thesis discusses real-world asset maintenance scheduling problems arising from highway

management. Three parts are included. In Part I, in co-operation with Gaist Solutions Ltd.,

we specifically consider a drainage system maintenance problem and deliver an automated

scheduling process to replace the current manual approach. Due to the high computational

complexity in solving the large-scale optimisation problem, we focus on the solution approach

improvement in Part II. Part III talks about local authority road inspection, which is another

problem that is specifically relevant to the interests of Gaist Solutions Ltd.. This chapter

summarises each of the parts mentioned above.

Part I: Geographically distributed asset maintenance

The research in part I is motivated by a real-world The research in part I is motivated by a real-

world large-scale drainage system maintenance scheduling problem. Based on problem analysis

and assistance from our business partner, Gaist Solutions Ltd., we built our understanding of

geographically distributed maintenance problems (GDMP) step-by-step, and we realised that

many public asset maintenance problems show similar characteristics. At a high level, a GDMP

has a set of geographically distributed assets that require maintenance service for a long period

or over a continuous period of time to perform their designed functions. Each asset gradually

degrades over time and the objective is to make decisions regarding how to deliver maintenance

service optimally to such a system while using limited resource.

Further analysis leads the study to focus on subjects within vehicle routing problems,

periodic vehicle routing problem (PVRP) in particular. PVRP is the closest standard model

that captures some of the properties of our GDMP, including the geographically distributed

points and the specified service pattern for each point within the planning horizon. However,

we do not always have clear service date information in all cases due to reasons, such as:

1. Large-scale system and different degradation processes of each of the assets in the system

(e.g. affected by local environments). It is too hard to specify the service pattern for

each individual asset in the system.
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2. Dynamic degradation process in which factors such as season and weather changes may

affect the assets’ degradation process.

In these situations, the question is to find the optimal date to service each asset and the

optimal daily service routes. More complex situations, such as dealing with multiple service

types (i.e. preventative, corrective maintenance) and sudden disasters are involved in real-world

scenarios. To solve this problem, we propose the following:

1. We propose a predictive scheduling strategy operating on a rolling planning horizon, and

transform the research question to find the optimal date to deliver service and to identify

the assets that need maintenance services the most in the short planning horizon in the

near future.

2. We apply a function-based asset lifetime estimation method, Weibull distribution (Weibull

(1951)), to estimate the condition of each gully pot in the drainage system at any day.

Local environment and seasonal information is considered in the lifetime estimation. A

further discussion is given regarding other asset lifetime estimation approaches, which

can be utilised in other asset maintenance scenarios.

3. We employ a risk driven model in the predictive scheduling strategy to guide the service

despatching towards assets, which need services soon.

4. Within the predictive scheduling solver, the service routes are also optimised with respect

to the total travel and service time.

According to our simulation-based analysis, we suggest a large reduction in the daily surface

water flooding risk, by about 17% in Blackpool’s drainage system, if we replace the current

manual scheduling strategy with the predictive scheduling strategy.

The simulation-based analysis has also helped to investigate the potential effect of two

investments to improve the manual maintenance quality, which are“banning parking” policy

and improving the timeliness of information, as might arise from the use of a low-cost wireless

sensor technique. Using simulation-based analysis, we see that a “banning parking” policy

might improve maintenance quality to some extent, and that “untimely information” is a

significant factor in lowering the efficiency of maintenance. There are still many challenges for

the sort of sensor technique (See et al. (2012)), which is needed to provide timely information in

practice. Our simulation results suggest that a full-sensoring drainage system can bring about

a large risk reduction by about 92% and cope with up to 30% false positive and false negative

error information.

To set up the simulations, we closely worked with Gaist Ltd. (our business partner) and

local councils in the UK to provide the best data. However, even then limited data was available.
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Even though our analysis uses simulations, which may not be accurate for realistic situations,

the proposed maintenance strategy and the risk analysis provides insights into potential ways

to improve the current practices on drainage system maintenance in the UK. The contribution

of this thesis is to increase our ability to model and analyse GDMPs.

Discussion and future work In this research, we aim to link drainage maintenance with

city flooding risk management. Surface water flooding (SWF) normally occurs when intense

rainfall is unable to enter a drainage system. This may be because of drainage blockages,

breaks or if the draining capacity has been exceeded. In the first two cases, good drainage

maintenance should make a big contribution to the SWF risk management.

Reviewing the risk driven model applied to the drainage maintenance problem, in order

to evaluate the daily SWF risk caused by drainage failure, we analyse the historical flooding

frequency in the Blackpool area to derive the average daily risk impact information ri for each

gully pot i in the system. Then the risk estimation (riPi(d)) is used to produce optimised

maintenance scheduling. (Pi(d) represents the probability of gully i being blocked on day d).

This approach uses historical information, which may lead to the risk estimation for future days

to become less accurate. In addition, for high risk flooding areas with natural water resources

(i.e. river, coast), it is important to integrate additional information (e.g. water level) to adjust

emerging maintenance actions if necessary.

To improve the adoption of the risk driven model on the drainage maintenance problem,

instead of using historical information, we could utilise weather forecast information to assist

in forming more accurate risk estimation. In more detail, the flooding risk caused by each

gully pot i is the product of its direct risk impact qi and the probability of flooding happens

there due to gully failures, denoted as Fi. Here, direct risk impact measures the estimation

of total value loss if floods happens. Further work is required to come up with a function

Fi(Pi(d), lrain, brisk), which defines the flooding probability based on the information of the

probability of a gully pot blocked Pi(d), the level of rainfall lrain estimated in future days, and

the flooding risk base level, which grades the gullies based on its historical likelihood of general

flooding (e.g. distance to a natural water source).

As time passes and knowledge gain increases, we can improve the quality of our risk esti-

mates and thus our predictive scheduling quality.

We give two further suggestions when adopting the predictive scheduling strategy and

similar analysis, when it comes to general real-world applications. They are:

• For any data-supported decision-making process, it is worth noting that we cannot spend

too much effort to complete an accurate survey and collect more data resource. Accurate

and sufficient data is critical for effective and efficient maintenance scheduling.
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• When dealing with large-scale problems like the drainage system maintenance case study

from Gaist, problem simplification techniques, such as grouping gullies and pre-preparing

candidate routes are always worth considering.

Part II: Heuristic search methods

To be able to solve large-scale combinatorial optimisation problems, (meta-)heuristic methods

are preferred. Due to the high computational complexity involved in solving these problems,

developing efficient algorithms is equally important to deliver useful solutions to real-world

problems.

In part II, our focus is on the designing of efficient heuristic based methods. The aim

is not only building efficient solvers for the GDMP, but also more generally understanding

the behaviour of each algorithm while solving problems with different characteristics. With

the successful experience of applying a BEBO hyperheuristic to solve our drainage system

maintenance problem in Chapter 5, we continue our investigation on various hyperheuristic

frameworks, and test them on the benchmark PVRP instances, which allows us to compare

the algorithm performance with the state-of-art meta-heuristics developed by other authors.

The spirit of hyperheuristic is to introduce artificial intelligence to algorithm self-design

and self-adaptation for solving different difficult problems. The algorithms that apply simple

random decision making process (e.g. low-level-heuristic selection) still count as hyperheuris-

tic, even though they may not looks smart. According to our experiments tested on small

benchmark PVRP instances (Chapter 7) and experience from other authors (e.g. Gulczynski

et al. (2011); Vidal et al. (2012)), there are many advantages to involving random decision

making within the algorithm design:

1. Memory efficient. Complex decision making always needs additional information stored

(e.g. historical search trajectory).

2. Computationally efficient. A random strategy requires minimal calculation to make a

search decision. An additional benefit of this method is to complete more iterations when

search through the solution space, which may explain why this method out performs other

sophisticated algorithms on some problems.

However, when applying the random decision-making approach to bigger problems, we can

see that the random strategy gradually becomes less competitive than learning-based decision-

making approaches. Learning-based hyperheuristics introduce mechanisms that statistically

evaluate the performance of low-level-heuristics and make a choice based on the evaluations.

The evaluation method usually defines the name of learning-based hyper-heuristics. According
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to our experience, it is difficult to conclude that one hyperheuristics always outperforms others

for different types of problems. Further work could investigate ways to evaluate “strong”

low-level heuristics and the reasons of preference of problem type to hyperheuristics.

To successfully apply a hyperheuristic method to problems, as well as the hyperheuristic

design itself, it is important to have a good set of low-level-heuristics. The set of low-level-

heuristics can be considered as a tool box, whilst a hyperheuristic acts as an intelligent agent to

choose the right tool at the right time. Therefore, a good set of low-level-heuristics should be

able to reach any solution in a solution space, when used in different orders and combinations.

In Chapter 8, we address designing of an efficient local search (LS) process. A novel dy-

namic multi-arm-bandit neighbourhood search (D-MABNS) is proposed, which aims to quickly

find a descent direction during each iteration of LS and reach the local optimum effectively.

The D-MABNS design is based on the observation that it can be inefficient to check the en-

tirety of one move’s neighbourhood before considering others (Figure 8.2, Chapter 8). We

perform a comprehensive analysis and gain insights into the relationship between neighbour-

hood structure and search strategies. To effectively solve our large scale GDMP, D-MABNS

utilises the orderliness property of its neighbourhood structures and applies techniques that fo-

cus the search in promising areas of the solution space. Compared to the BEBO hyperheuristic

developed in the earlier work, D-MABNS achieves significant better results within the same

calculation time.

The D-MABNS does not show much advantages when tested on the benchmark PVRP

instances. The PVRP neighbourhood structures show little or no orderliness in features that

have already been used. Also, the tested PVRP instances are of much smaller size compared to

the drainage maintenance problem. Therefore, it is relatively fast to search through an entire

neighbourhood in these cases. These may be the reasons that reduce the impact of D-MABNS’s

tricks during the search.

Discussion and future work In the developing of our heuristic search methods, we mostly

focus on LS -based approaches (see review in Section 2.1.2.3). In recent years, many hybrid-

heuristics that combine the techniques from population-based meta-heuristic and LS have

achieved significant success in solving difficult combinatorial problems (e.g. Nagata et al.

(2010); Vidal et al. (2012)). Compared to the multi-restart technique mostly used in this the-

sis, when a search gets stuck in a local optimum, we think it is worthy to investigate some

recombination operators, which are normally introduced in population search methods. By

introducing recombination between good solutions, we may have a bigger chance of starting

the following LS process within promising areas.

Another thought when adopt our algorithms in real-world scenarios is parallelisation. For

the learning based hyperheuristic (Chapter 7), the process of calling each selected low-level-
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heuristic can certainly be parallelised. Similarly, D-MABNS (Chapter 8) could also examine

several neighbours each from a different neighbourhood simultaneously.

In Chapter 8, experiments show that the D-MABNS outperforms the BEBO hyperheuristic

in solving Gaist Solutions Ltd.’s drainage system maintenance scheduling problem in a short

period. In the future work, we would like to apply D-MABNS on the rolling horizon scheduling

framework (Chapter 5) and deliver the long period risk analysis of adopting D-MABNS as the

schedule solver. We are hopeful that a larger risk reduction can also be achieved in the long

period as its success has been shown in the short-period experiments.

Part III: Large-scale road inspection

Part III focuses on a separate highway maintenance issue, which again is of interest to our

partner, Gaist Solutions Ltd. As it deals with the road inspection problem. The aim here

is to make a strategic decision in OR to choose a cost-effective method of delivering the road

inspection on a national scale. Specifically, we explore the potential benefits of using inspection

vehicles, which can collect road-lane information for both sides of a single carriageway in one

traversal, as opposed to more common single-sided monitoring, which has to use a bi-directional

strategy to monitor every road.

The interest of this study is not only in the question itself, but also in its large scale. Three

achievements of this work are addressed. First, according to our data analysis and theoretical

proof, we model the real-world road inspection problem as a CPP, which allows us to accurately

estimate the total travelling distance needed in a national-scale road inspection. Second, to

solve large-scale problems, we propose a graph-reduction strategy, which significantly speeds

up the Chinese Postman Tour (CPT) (Guan (1962)) calculation time. Third, based on the

study of seven UK road networks, including the ones in both urban and rural areas, the total

savings from road-inspection expenditure for UK government is estimated to be up to £4.32

million, when the more efficient one-pass road inspection strategy is applied.

Discussion and future work The experiments in this study show that significant per-

formance improvements follow if data simplification is performed before actually solving the

problem. This idea is also employed in solving the drainage system maintenance problem (Part

I). The problem reduction techniques introduced in Chapter 5, including the point grouping and

routes preparing, essentially transform the original routing and scheduling problem into a much

smaller combinatorial problem. These techniques earn the advantages of both computational

and memory efficiency.

In this study, the proposed that graph reduction approach can only be applied to undirected

graphs. In practice, there are many one-way systems in our road networks. It would be more
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useful and accurate if a similar approach would be applied in a mixed or directed graph. In

the design of one-way road system, we could always find a set of minimum distance tours,

which include the one-way edges at least once. From this perspective, many of the one-way

road system could be (partially) pre-digested as giant nodes in a directed graph. We think

that further effort is worthy of being spent on the extension of the current graph-reduction

approach to deal with mixed and directed graphs.

To complete the road inspection task in practice, as well as the analysis from a strategic

decision, further work should be considered at the operational decision making level. Example

questions to answer include optimally dividing the country into sub-areas, finding the optimal

starting points for each vehicle tour and designing optimal survey routes for each vehicle with

consideration of constraints (e.g. traffic in urban area, one way road).

Last words

In conclusion, this research has increased our knowledge of using the risk management concept

(from a high-level strategical planning) to automatically deliver detailed operational actions (i.e.

scheduling and routing) for large-scale GDMPs. The work in this thesis makes contributions

toward this goal from several aspects, including problem analysis, modelling, and solution

approach development. We hope that the scope for further research discussed in each part

will enhance the generality and robustness of solutions, which can be applied to wider problem

domains and more complex scenarios.
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Appendix

Table 11.1: Best found solution of PVRP instance (p04)

p04 (total length of routes: 835.3)
day1:
Route0: 0,67,46,34,4,75,0,
Route1: 0,6,33,63,23,56,24,49,16,0,
Route2: 0,27,37,20,70,60,71,69,36,47,48,0,
Route3: 0,62,22,64,42,41,43,1,73,51,0,
Route4: 0,30,74,21,61,28,2,68,0,
day2:
Route5: 0,17,40,9,39,12,26,0,
Route6: 0,38,65,66,59,14,7,0,
Route7: 0,52,19,54,13,57,15,5,29,45,0,
Route8: 0,8,35,53,11,10,58,0,
Route9: 0,3,44,32,50,18,55,25,31,72,0,
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(a) mi01: 2815 vertices (b) mi03: 14074 vertices

(c) mi04: 21111 vertices (d) mi05: 28149 vertices

Figure 11.1: Effect of feature sorting strategy with different neighbourhoods prune rate γ to
different sizes of GDMP instances

(a) mi01: 2815 vertices (b) mi02: 7037 vertices

(c) mi03: 14074 vertices (d) mi04: 21111 vertices

Figure 11.2: The effect of parameter λ on the algorithm performance with two different pruning
parameter setting. The other parameter settings are {w = 400, RF = exp(a = 5), α = 0.8}.
Tested on different sizes of GDMP instances
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Özcan, E., Bilgin, B., and Korkmaz, E. (2008). A comprehensive analysis of hyper-heuristics.

Intelligent Data Analysis, 12(1):3–23.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal

of Operational Research, 34(3):336–344.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1):100–115.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2014). Improved Branch-Cut-and-Price for

capacitated vehicle routing. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8494 LNCS:393–403.

Penna, P. H. V., Subramanian, A., and Ochi, L. S. (2013). An iterated local search heuristic

for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2):201–232.
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