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a b s t r a c t 

Gully pots or storm drains are located at the side of roads to provide drainage for surface water. We con- 

sider gully pot maintenance as a risk-driven maintenance problem. We explore policies for preventative 

and corrective maintenance actions, and build optimised routes for maintenance vehicles. Our solutions 

take the risk impact of gully pot failure and its failure behaviour into account, in the presence of fac- 

tors such as location, season and current status. The aim is to determine a maintenance policy that can 

automatically adjust its scheduling strategy in line with changes in the local environment, to minimise 

the surface flooding risk due to clogged gully pots. We introduce a rolling planning strategy, solved by 

a hyper-heuristic method. Results show the behaviour and strength of the automated adjustment in a 

range of real-world scenarios. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

A gully pot is the part of the storm drain that prevents solids

nd sediment from flushing into sewers, where they cause block-

ges in the underground surface water collection infrastructure

 Butler, Xiao, & Karunaratne, 1995 ). Regular cleaning is required for

ully pots to function effectively ( Karlsson & Viklander, 2008; Scott,

012 ): typical strategies are to clean all gully pots once or twice

 year. If gully pots are not cleaned regularly, partial or complete

lockages and accelerated deterioration of the gully pots increases

he likelihood of surface water flooding. In extreme situations such

s intensive rainfall, a clogged drainage system may cause serious

roperty loss (i.e. BBC, 2011; 2012; Leylandguardian, 2015; Shield-

gazette, 2012 ). 

In the UK, gully pot cleaning is undertaken by local coun-

ils, each using its own strategy. Our research focuses on gully

ot cleaning for Blackpool, UK, with data from the local coun-

il and from consultants, Gaist Solutions Ltd. Blackpool’s gully pot

aintenance system records 28,149 gullies in an area of about
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6.1 kilometre 2 . Analysis of real-world gully pot maintenance

ecords shows that season and weather play a critical role: leaf-

all causes many gully pot blockages, whilst strong winds can blow

and or dirt into gully pots causing partial blockages. Historically,

eporting of gully pot issues by local residents varies across the

easons and is the lowest in winter, when short daylight and cold

eather reduce footfall. 

Blackpool local council has two gully cleaning vehicles but only

ne cleaning team. On any day, the team either takes out the

ormal cleaning machine, which uses hydrodynamic pressure and

 vacuum to loosen and remove solids and liquids from a gully

ot ( Karlsson & Viklander, 2008 ), or uses a specialist machine,

quipped for fixing broken gully pots. The cleaning team manager

stimates that the average time to clean a gully pot is about 5 min-

tes, whilst the specialist vehicle takes an average of 10 minutes to

x or replace a damaged gully pot excluding travel time. 

Each day there is a schedule of gully pots to visit, starting and

nding at the depot. Either maintenance vehicle departs the de-

ot at 09:00 and returns no later than 17:00. During servicing,

ome gully pots are inaccessible, usually due to parked vehicles.

f the team encounters a broken gully pot during normal clean-

ng, it is recorded and subsequently added to the schedule of the

pecialised vehicle. Scheduling also needs to take account of res-

dents’ reports of problematic gully pots: depending on the local

isk, these emerging events should be scheduled 5 to 20 days from

hen they are recorded. 
ventative and corrective maintenance schedules for a large scale 
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In constructing routes, we take account of both preventative

cleaning, and response to emerging events. We would like to gen-

erate actual gully pot maintenance schedules that are dynamically

optimised to take account of each gully’s up-to-date status and its

risk impact (which varies across the city). We assume that the ca-

pacity of the cleaning vehicle is sufficient for normal daily work,

and the waste disposal process is beyond our scheduling pro-

gramme. Thus, no vehicle capacity constraint is considered in this

study. We propose a dynamic short-period scheduling approach,

with two component tasks, as follows. 

1. Decide which gully pots to service in the near future, according

to the current environment and most recent gully pot condition

information. 

2. Construct daily cleaning routes that minimise the travelling

cost, and maximise the number of gullies cleaned every day. 

This problem is similar to the well-known periodic vehicle

routing problem (PVRP) ( Baldacci, Bartolini, Mingozzi, & Valletta,

2011; Christofides & Beasley, 1984; Gulczynski, Golden, & Wasil,

2011; Hemmelmayr, Doerner, & Hartl, 2009; Vidal, Crainic, Gen-

dreau, Lahrichi, & Rei, 2012 ). Since only one vehicle works each

day, it could be specified as a periodic travelling salesman problem

(PTSP). However, there are a number of distinguishable character-

istics in our gully pot cleaning problem. Firstly, during the plan-

ning period, not all gully pots can be cleaned. Secondly, there is no

hard constraint of overall cleaning frequency for each gully pot, so,

rather than a service pattern, we use a function to estimate a fail-

ure rate for each gully pot and identify which pots require servic-

ing. Finally, our guiding principle is to minimise the urban surface

water flooding risk caused by clogged gully pots, whilst optimising

the cost of daily cleaning routes. 

In this paper, we propose an approach that maintains a set

of distance optimised routes evolving with the environmental

changes over time. We apply a tabu-based hyper-heuristic – binary

exponential back off (BEBO) ( Remde, Dahal, Cowling, & Colledge,

2009 ) which manages a set of route-adapting and scheduling local

search operators to improve the solution iteratively. 

The remainder of the paper is organised as follows.

Section 2 presents the literature survey relevant to this study.

Section 3 defines the model and describes the solution approach

in detail. A comprehensive discussion and analysis of drainage

system maintenance strategies is given in Section 4 . Finally,

we present the conclusion and directions for future research in

Section 5 . 

2. Related works 

2.1. Preventative maintenance and corrective maintenance 

Maintenance is generally categorised into corrective and pre-

ventative maintenance ( Ahmad & Kamaruddin, 2012; Duffuaa, Ben-

Daya, Al-Sultan, & a.a. Andijani, 2001 ). Corrective maintenance

(CM) usually happens after failures occur. It includes actions such

as repair and replacement. Tsang (1995) notes that the conse-

quence of doing only corrective maintenance is a high risk of ma-

chine downtime and property loss. Preventative maintenance (PM)

is an alternative strategy that reduces these risks. In industry, pre-

ventative maintenance typically takes place at regular time inter-

vals, based on experience. 

Operational research on PM introduces decision making, based

on data analysis, with techniques such as time-based (TBM) (e.g.

Scarf & Cavalcante, 2010; Wu, Adam Ng, Xie, & Huang, 2010 ) and

condition-based maintenance (CBM) (e.g. Campos, 2009; Carnero

Moya, 2004 ). TBM can be applied when the failure rate is pre-

dictable, whilst CBM is employed where conditions are continu-
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
usly monitored by sensor or any appropriate indicators. A similar

pproach, tracking real-time operation information, is also applied

n dynamic scheduling (e.g. Cowling & Johansson, 2002 ). There is

ittle research combining PM and CM strategies: Kenne and Nke-

ngoue (2008) introduce a PM/CM rate control strategy, obtaining

 near-optimal maintenance policy for a manufacturing system. 

Our gully pot maintenance problem involves geographically dis-

ributed points and a strictly-limited service resource. Therefore,

nstead of finding an optimal maintenance policy for each indi-

idual object, the focus of this research is to produce an opti-

al maintenance schedule covering all objects within time and re-

ource constraints. 

.2. Maintenance & on-site service problem modelled as periodic 

ehicle routing problem 

The periodic vehicle routing problem (PVRP) model is widely

sed, and planning routes for maintenance and on-site service is

ne of its many applications. 

Blakeley, Bozkaya, Cao, Hall, and Knolmajer (2003) use a

ultiple-objective PVRP to model PM for real-world elevator and

scalator maintenance, which includes periodically checking cus-

omers’ equipment and reacting to call-outs. Travelling time, work-

oad balancing, visiting time window violation and overworking

ime are considered in a weighted linear function. A two-stage ap-

roach is used: 1) assign all tasks to each technician, based on

echnician skill sets and the geographical distribution of tasks; 2)

olve periodic travelling salesman problem (PTSP) for each techni-

ian over a 13-week period. 

Jang, Lim, Crowe, Raskin, and Perkins (2006) implement a very

imilar two stage approach to solve a problem of routing lottery

ales representatives to visit lottery retail locations. In their assign-

ent stage, the k-means clustering method is used. 

Related work has also been analysed in remote healthcare ser-

ices. An, Kim, Jeong, and Kim (2012) consider the home health-

are problem, which needs to provide periodical services to various

atients. 

Maya, Sörensen, and Goos (2012) help an education institution

o provide periodical services for disabled children. This problem

s considered as a multiple depot PVRP as each teaching assistant

tarts and ends their journey from home. 

Alegre, Laguna, and Pacheco (2007) analyse a real-world peri-

dic pick-up of raw materials problem and modelled it as PVRP.

he notable characteristic of this research is the very long plan-

ing horizon (90 days) compared to other literature. 

Tang, Miller-Hooks, and Tomastik (2007) model a geographically

istributed equipment maintenance scheduling problem as a mul-

iple tour maximum collection problem with time dependent re-

ards. The rewards are decided based on manufacturer mainte-

ance interval suggestions. The approach has similarity to PVRP,

n that a schedule is produced for a given period (e.g. a week or

 month). On the other hand, some significant differences include:

ot all equipment requires a visit within a planning horizon; the

bjective is not to minimise the travelling cost but to maximise the

eward from completing tasks (i.e. fixing or checking a machine). 

García, Pacheco, and Alvarez (2013) consider a perishable prod-

cts supply problem for a bakery company. Weekly delivery routes

rom the depot to distributors are generated. This problem intro-

uces certain flexibility in the delivery date. The authors intro-

uce a bi-objective model that minimises the total travelled dis-

ance and the total stock over the planning horizon simultaneously.

wo meta-heuristic approaches such as linked VNS and NSGA-

I ( Deb, Pratap, Agarwal, & Meyarivan, 2002 ) are applied to pro-

uce good approximations of the Pareto front for this bi-objective

roblem. 
ventative and corrective maintenance schedules for a large scale 

), http://dx.doi.org/10.1016/j.ejor.2016.07.027 
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Table 1 

Social factor evaluation. 

Group Social concerns Estimated Value loss from Risk 

value flooding (percent) impact 

1 Residential £113,0 0 0 3 £34 

2 Local centre £1,130,0 0 0 5 £580 

District centre £1,695,0 0 0 5 £870 

Business area £565,0 0 0 5 £290 

Employment sites £226,0 0 0 5 £116 

3 School £5168 4 £71 

Large hospital £917,808 4 £377 

Doctors £9178 4 £73 

Bus route £220 100 £37 
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.3. Solutions of PVRP 

To solve PVRP-related problems, two main processes are com-

only considered. The first approach (e.g. Alegre et al., 2007 ) as-

igns customers to days according to their service pattern and then

olves a VRP for each day. This solution transforms PVRP to a mul-

iple depot VRP (MDVRP). The second approach (e.g. Tang et al.,

007 ) is to simplify a PVRP to PTSP by assigning customers to each

ehicle/salesman. Routes are then built up and scheduled to days.

his second approach is usually used when the service fleet is het-

rogeneous, or when strong ties exist between specific service per-

onnel and customers. 

Baldacci et al. (2011) propose a successful exact algorithm for

olving the PVRP. To our knowledge, this paper presents the largest

VRP solved by an exact algorithm, at 199 customers. 

Meta-heuristics, which are capable of solving large scale real-

orld problems, are the most common PVRP solvers in litera-

ure. Chao, Golden, and Wasil (1995) present a two-stage record-

o-record algorithm that constructs solutions using several local

oves applied one after another. Cordeau, Gendreau, and Laporte

1997) were the first to use a tabu search heuristic for PVRP. During

he search, infeasible solutions are allowed and controlled using

n adaptive penalty function. Alegre et al. (2007) apply a scatter

earch framework ( Laguna & Marti, 2012 ) to solve PVRP. The algo-

ithm is based on a problem of assigning calendars to customers

n a periodic vehicle loading problem ( Delgado, Laguna, & Pacheco,

005 ). Another strong meta-heuristic framework for PVRP, variable

eighbourhood search (VNS), is proposed by Hemmelmayr et al.

2009) . Pirkwieser and Raidl (2010) add a coarsening and refine-

ent process to VNS, called multilevel VNS for PVRP. 

More recently, hybrid meta-heuristics present very competitive

esults in terms of both solution quality and computational time.

ulczynski et al. (2011) describe an integer programming-based

euristic (IPH): in this approach, the reassignment and daily rout-

ng processes are repeatedly applied until little or no improvement

s found in the current iteration, when a restart initial solution is

enerated. Gulczynski et al. (2011) report that IPH out-performs

he algorithms proposed by Alegre et al. (2007) ; Chao et al.

1995) ; Cordeau et al. (1997) ; Hemmelmayr et al. (2009) . Vidal

t al. (2012) propose a hybrid genetic algorithm that combines lo-

al search and sophisticated population management strategies to

uide the search, an approach shown to perform better than all

he above algorithms. Cordeau and Maischberger (2012) combine

abu search and iterated local search to give a competitive, broad

xploration of the search space. Rahimi-Vahed, Crainic, Gendreau,

nd Rei (2012) propose a modular heuristic algorithm (MHA) that

ntroduces a reference set to guide exploration and exploitation

uring the search for solutions minimising the number of vehicle

sed. In addition, these authors present a self-learning mechanism

hat leads the search to assign better customer visit patterns as the

olution evolves. 

. Solution 

.1. Modelling 

Here, we clarify our gully pot maintenance problem with its

atural features using a mathematical model. A geographically-

istributed system has N points that need maintenance over a long

eriod D (e.g. 3 to 5 years). Each point i is associated with a risk

mpact r i , which measures the value of this point to its surround-

ng environment (i.e. critical properties). The failure probability of

ach point changes over time, and can be estimated by a function

 i ( d ), which measures the probability that gully i is in a failure

tate on day d . A subset of points, M ∈ N , is scheduled in the next
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
hort maintenance period W (e.g. a week or 2 weeks). Other input

arameters include the following: 

• T max : the maximum travelling time allowed for each route; 
• d ij : distance, in terms of travelling time, from gully i to j : we

use actual road distance between points; 
• t i : service time at point i . 

The objective is to select a judicious subset of points from N

nd assign them to days of the following short period, in order to

inimise the risk in this period: 

∑ 

d∈ W 

N ∑ 

i =1 

r i P i (d) (1) 

his problem is subject to two constraints: (1) for any route, the

otal travelling time plus the total servicing time does not exceed

 max for that route; (2) each route must start and end at the depot.

.2. Problem preparation 

.2.1. Estimating the risk impact per gully pot 

A potential hazard (i.e. surface water flooding) could be exac-

rbated by both geographic factors (i.e. elevation, soil type) and

ocial-related factors, which are usually influenced by economic,

emographic and building types ( Cutter, Carolina, & Boruff, 2003 ).

 higher risk impact here implies that if a particular gully pot is

locked and floods happen, it results in relatively larger economic

nd social losses. In other words, we prefer to clean the gully pots

ith larger impact more frequently to keep them working properly.

o-operating with Blackpool local council, we firstly decide a list of

ocial concerns with awareness of their economic and population

nfluence, as shown in Table 1 . Then, each gully pot is evaluated by

ts location and the related social concerns. 

Based on the existing data from Blackpool council, social con-

erns are classified in to three groups: 1) residential property; 2)

ommercial and industrial areas including local and district cen-

res, business zones, and employment sites; 3) public services in-

luding schools, hospitals, doctors and public transport routes. In

able 1 , the estimated value of each item in group 1 is the average

esidential house price in Blackpool ( UK GOV, 2015 ). Group 2 takes

ccount of the footfall and critical building prices for each item.

he estimated value of items in group 3 is based on average daily

peration costs. 

Flooding impact analysis involves large uncertainties. Research

as shown historic flooding from different perspectives ( Brouwer

 Van Ek, 2004; Changnon, 1999; Merz, Kreibich, Thieken, &

chmidtke, 2004; Thieken et al., 2008 ). We do not expect a pre-

ise assessment of impact. Instead, we aim to find values that are

ble to guide gully pot maintenance actions in decision making.

ere, we mainly focus on direct economic losses using a damage

unction which relates to property type and water level. Thieken

t al. (2008) propose the impact from a range of flood water levels
ventative and corrective maintenance schedules for a large scale 

), http://dx.doi.org/10.1016/j.ejor.2016.07.027 
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Fig. 1. Gully pot risk impact in Blackpool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Example of a gully pot lifetime with 1 tree nearby at dif-
ferent seasons

(b) Example of a gully pot lifetime with 5 tree nearby at dif-
ferent seasons

Fig. 2. Probability of being blocked since last maintenance action. 
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6  
on different building types. After consulting Blackpool Council and

Gaist Solutions Ltd., we decide to focus on the impact of flood-

water levels of less than 21 centimetre. This gives value-loss fig-

ures ( Table 1 , third column) of 5 percent, 3 percent and 4 percent

for commercial, residential and public service areas, respectively.

For public transport we focus on bus routes, estimating the cost of

closing a road section due to surface water flooding. 

By analysing Blackpool historic flooding frequency ( Blackpool,

2009 ), the probability of flooding events is used to map the flood-

ing value loss to the daily risk impact per gully pot according to

its location (last column of Table 1 ). We assume that gullies in the

same section of a street evenly share the responsibility for the risk

impact evaluated in that area. Fig. 1 illustrates the geographic dis-

tribution of gully pot risk impact in Blackpool. 

3.2.2. Estimating the process of a gully pot blocking 

Ahmad and Kamaruddin (2012) suggest that time-based main-

tenance is the normal strategy in situations where equipment

has a fixed lifespan or predictable failure behaviour. After anal-

ysis of historic gully pot records, we model the gully pot block-

ing process using the Weibull distribution model ( Ebeling, 2004;

Weibull, 1951 ), from reliability theory. The parameters of this form

of Weibull distribution are the shape parameter k , and the scale

parameter λ. In our study, we define k = 6 , which captures a real-

istically increasing blocking rate over time. The scale parameter λ,

capturing lifetime behaviour, is affected by location and seasonal

factors, according to a simple linear function: 

λ = 

⎧ ⎨ 

⎩ 

10 ... if gully pot recorded as broken 

E cal l ing ... a calling event 

max (90 , E − ∑ 

f∈ F n f ∗ s f ) ... normal state 

E calling represents the expected number of days from a report

on a gully pot to its servicing. E is the expected number of days

that it would take a normal gully pot to become blocked since its

last service. Here, E = 10 . 3 years. F is a set of factors that may af-

fect gully pot lifetime, such as street type, number of trees nearby,

and blown sand effect: n f represents the effect level from a spe-

cific factor f ∈ F to a gully pot; s f adjusts the effect from factor
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
 according to seasonal information. For example, if a gully pot

s on a street with five deciduous trees nearby, then n f = 5 with

 f = 93 , 1 , 389 , 433 in spring, summer, autumn and winter respec-

ively. If a gully pot location is not affected by factor f , we simply

ssign n f = 0 . All values are based on our statistical analysis of the

lackpool data. Fig. 2 illustrates two examples of gully pot lifetime

stimation taking account of the surrounding environment. 

.2.3. Reducing the problem size 

Blackpool local council would prefer to use an informed main-

enance plan at the level of individual gully pots. In recent years,

PS techniques and GIS systems are able to support more precise

ction tracking and decision making. Our maintenance schedul-

ng problem (28,149 gullies; 36.1 kilometre 2 ) is significantly larger

han existing PVRP case studies. Building geographically tight clus-

ers is the most common step used to reduce a problem (e.g.

lakeley et al., 2003; Cordeau et al., 1997; Tang et al., 2007 ). 

In order to reduce the problem size whilst retaining enough in-

ormation to build feasible cleaning routes and track gully pot con-

ition, we group gully pots located on the same section of street.

s shown in Fig. 3 (a), we assume that these gully pots share the

ame environmental factors. Gully pots in the same group are al-

ays scheduled together for preventative maintenance. The service

ime of a group includes both cleaning time for the gully pots and

ravelling time inside this section of a road. This representation

lso maintains traffic distance: for instance, the distance between

roup point 1 to group point 6, in Fig. 3 (b), is the road distance

easured from the red node of road 1 to the green node of road

, in Fig. 3 (a). Furthermore, individual gully pot states (i.e. normal,
ventative and corrective maintenance schedules for a large scale 

), http://dx.doi.org/10.1016/j.ejor.2016.07.027 
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(a) Example of gully pot on street

(b) Example of grouped information

Fig. 3. Reduce problem size. 
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Fig. 4. Solution representation and data structure for storing candidate routes. 
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alling, broken) are still recorded, because unexpected damage or

lockage events may happen to any of them: this allows corrective

ctions to be accurately planned. A gully-pot-cluster is labelled as

n normal state only if all the gully pots included are in normal

tate. The risk of a gully-pot-cluster is the sum of all included gully

ots’ risk at any given time. 

By applying this grouping strategy, we reduce the preventative

aintenance problem size from 28,149 to 9277 points. For correc-

ive actions, routes are built on problematic gully pots, which only

ompose a small size vehicle routing problem. 

.3. Solution representation 

An interesting feature of our problem is that our objective func-

ion is designed for a short-term scheduling problem, but the over-

ll aim is to analyse the scheduling impact for long-term risk

anagement. Due to the changing environment and unexpected

merging situations, we cannot assume any repeated schedules

etween periods. To solve the long-term scheduling problem, a

olling horizon approach is devised, in which the short-term prob-

em is solved repeatedly, given updates to environment and gully

ot status. 

Fig. 4 shows the data structure used to store the solution. A

 days schedule contains selected w IDs of candidate routes. Each

oute in the candidate set is optimised on distance. A route is com-

osed of an ID, route information and the actual tour. Route in-

ormation includes up to date gully pot condition which helps to

roduce schedules: 

1. route length; 

2. number of gully pots; 
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
3. current route risk, which is the sum of the risk impact for each

gully pot multiplied by that pot’s current failure rate; 

4. tabu tenure l in days, which is used to stop the revisiting of the

same preventative route in the near future. 

.4. Candidate routes set management 

The candidate route set ( Fig. 4 ) consists of an initial fixed-routes

et, a re-optimised routes set and a reactive routes set. Once the

nitial fixed routes set is built, these tours will not be changed

uring execution; it stores initial solutions for preventative mainte-

ance (see Section 3.4.1 ). Routes in the re-optimised routes set are

epeatedly updated during optimisation, as a result of environmen-

al changes that cause gully pot status changes (see Section 3.5 ).

he size of the re-optimised routes set is fixed at m routes. When

he set is full and new routes are generated, the oldest route is

eplaced. Routes in the reactive routes set are built from a set of

merging events and they are all discarded when a schedule solu-

ion is executed (see Section 3.4.2 ). 

.4.1. The initial fixed routes set 

Routes optimisation is very CPU intensive, especially for such

arge problems. Constructing routes repeatedly in a rolling plan-

ing schema is not efficient. Here, we start by finding a group of

ptimised candidate routes that can be scheduled directly or ad-

usted based on updated information before the use of the route in

uture days. At this stage, we treat the problem as a VRP without

onsidering any risk impact or lifetime information. The objective

s to minimise the total travelling distance, with constraints includ-

ng: 1) all points in the system should be visited exactly once; 2)

ll routes should start and end at the depot; 3) no route travelling

ime should exceed T max . 

The vehicle routing solver starts from an initial vehicle rout-

ng solution, constructed using the Clarke–Wright (CW) Savings
ventative and corrective maintenance schedules for a large scale 
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Fig. 5. Inter-routes local moves. 
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heuristic ( Clarke & Wright, 1964 ). After an initial solution is con-

structed, the improvement phase uses variable neighbourhood

search ( Hansen, Mladenovi ́c, & Moreno Pérez, 2010; Mladenovi ́c

& Hansen, 1997 ) embedded with i -relocate and i -cross-exchange

shaking operators (see Fig. 5 ) and a local search phase. A sim-

ilar process is used by Hemmelmayr et al. (2009) in their daily

VRP solving stage. Here, i -relocate and i -cross-exchange represent

that a maximum i number of points in a route are changed in one

move. In total, 12 neighbourhoods are implemented. The order of

neighbourhoods is i -relocate (i = 1; 2; 3; 4; 5; 6) and then i -cross-

exchange (i = 1; 2; 3; 4; 5; 6). 

In order to enhance the solution quality, a local search strat-

egy is used after a solution is obtained through “shaking”. The sin-

gle route operator, 3-opt ( Lin, 1965 ) is adopted in an iterative first

improvement procedure. Only the two modified routes have to be

re-optimised. 

After finding the optimised VRP solution, we still can not guar-

antee that every route maximises the use of the daily time limita-

tion T max . Therefore, for each route in the candidate set S , we try

to insert the closest points which are not already included using

least cost insertion, until no more points can be inserted without

breaking the T max limitation. 
Fig. 6. Overview of sy

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
.4.2. The reactive routes set 

Before scheduling routes into days, we create candidate routes

n the reactive routes set, based on emerging events information.

uring the last w days, a normal callings and b broken reports are

eceived. Calling reports that have not been addressed and a new

alling reports make up the set V calls . In the same way, we also

et a set V broken . When a call is received, we register the cluster

D (see Section 3.2.3 ) so that the schedule can inspect gully pots

round the reportedly problematic ones; however, when broken

ots are discovered through preventative maintenance or inspec-

ion, we register them individually. 

The VRP solver described in Section 3.4.1 is used for both V calls 

nd V broken to create candidate route sets S calls and S broken , respec-

ively. Each route in S calls is treated as an opportunity to clean more

ormal-state gully pots on the journey, as the same vehicle is used

or the task. So, for each route in S calls , we try to insert the clos-

st cluster-points that are in a normal state, and whose time since

ast service is longer than 30 days. We use least cost insertion, un-

il no more points can be inserted without breaking the schedule

uration constraint based on T max . 

At this point, we have a candidate routes set (including pre-

entative routes, routes that mostly contain reported gullies and

outes that only contain broken gullies) optimised in distance: 

 all = S f ixed ∪ S cal l s ∪ S broken 

.5. Produce schedule 

To produce a maintenance schedule in continuous time,

ig. 6 illustrates an overview of system information flow and

lgorithm 3.1 describes a rolling horizon optimiser that automat-

cally selects appropriate maintenance actions (either preventative

r corrective) for the upcoming period. 

.5.1. Initialisation 

The initial schedule simply chooses the w number of routes

ith tabu tenure l s equals zero, from all candidate routes, S all , with

ighest risk, �i ∈ s r i P i ( today ). 

.5.2. Improve the schedule using BEBO heuristic 

The improvement stage is developed on a tabu search based

yper-heuristic method – binary exponential back off (BEBO), pro-

osed by Remde et al. (2009) . BEBO has the fundamental struc-

ure of a hyper-heuristic search strategy – a trial set of low level
stem operation. 

ventative and corrective maintenance schedules for a large scale 
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Algorithm 3.1 Rolling horizon optimiser – algorithm sketch. 

Define : 

S f ixed is the initial fixed route set containing distance optimised routes. 

S reopt is a set of distance optimised routes that are updated during the search according to the recent gully pots risk information; 

initially S reopt = ∅ 
l s is the tabu tenure of route s in days, to stop revisiting of this route in near future (Section 3.3). 

u s is a flag parameter to prevent cyclic testing of route s when using the scheduling-related LLHs (i.e. LLH 3 , LLH 4 in Section 3.5.2) 

Rolling horizon repeat every w days : 

1. Generate S cal l s and S broken based on emerging events. ∀ s ∈ S cal l s ∪ S broken , l s = 0 

2. Get the candidate routes set S all = S f ixed ∪ S reopt ∪ S cal l s ∪ S broken . ∀ s ∈ S all , u s = false 

3. Generate w days schedule solution x that minimises the objective function 1 (Section 3.5.1–3.5.3). 

4. Update risk information for routes s ∈ S f ixed ∪ S reopt , based on the changing condition of gullies; 

5. If any route s ∈ S f ixed ∪ S reopt is scheduled in x , l s = 30(days ) , otherwise l s = l s − w 
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euristics (LLHs) and systematic rules that control the usage of

ach LLH. BEBO uses dynamically adapted tabu tenures ( Glover &

aguna, 2013 ) during the search process, which is especially use-

ul when large neighbourhoods are involved. If a LLH performs

oorly in a recent search, it is disabled for a number of iterations.

f the LLH performs poorly continuously, the number of forbidden

terations increases. The detailed searching framework is shown in

lgorithm 3.2 ( Remde, Cowling, Dahal, Colledge, & Selensky, 2012 ).

lgorithm 3.2 Bebo hyperheuristic. 

Define : 

x is the current solution; 

LLH i is a low level heuristic; 
� 

(x, LLH i ) returns the new value of the objective function 1

from applying LLH i to current solution x ; 

tabu i is the tabu tenure of LLH i 

backof f min = 5 is the minimum backoff value 

backof f i is the backoff value of LLH i , where backof f i ≥
backof f min 

for all i do 

set backof f i = backof f min 

tabu i = 0 # in our implementation, we allow all LLHs to try at

least once at the beginning 

end for 

while ∃ i that tabu i = 0 do 

bestv alue = x. v alue 

for all LLH i do 

if tabu i = 0 then 

if 
� 

(x, LLH i ) < x. v alue then 

backof f i = backof f min 

if 
� 

(x, LLH i ) < bestv alue then 

bestv alue = 

� 

(x, LLH i ) 

besti = i 

end if 

else 

backof f i = backof f i ∗ 2 

choose tabu i randomly from { 0 , 1 , ..., backof f i } 
end if 

else 

t abu i = t abu i − 1 

end if 

end for 

if bestv alue < x. v alue then 

x ⇐ apply (x, LLH besti ) 

end if 

end while 

Originally, hyper-heuristics were designed for the purpose

f automatically choosing the right low level search strat-

gy/strategies at each decision point ( Cowling, Kendall, & Soubeiga,
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
001 ). There is good evidence that hyper-heuristics can be suc-

essfully applied to various combinatorial problems, such as

imetabling ( Bai, Blazewicz, Burke, Kendall, & McCollum, 2012;

urke, MacCloumn, Meisels, Petrovic, & Qu, 2010b )) and vehicle

outing ( Garrido & Riff, 2010; Misir, 2011; Walker, Ochoa, Gen-

reau, & Burke, 2012 ). Summaries of state of the art hyper-heuristic

echniques can be found in survey papers by Burke, Hyde, and

endall (2010a) ; Burke et al. (2013) ; Chakhlevitch and Cowling

2008) ; Özcan, Bilgin, and Korkmaz (2008) . 

Apart from the hyper-heuristic framework, a well-designed set

f LLHs is crucial to successfully applying a hyper-heuristic. In our

mplementation, the LLHs are designed at two levels: 1) route-

elated moves that modify routes by changing segments or points

n or between routes; 2) schedule-related moves that assign an op-

imised route to a day. The value of a solution is measured by the

bjective function in Eq. (1) , above. 

� Route related moves: 

The following route related moves are only applied to pre-

entative routes and routes that contain mostly reported calls.

ixing broken gully pots is carried out by a different vehicle.

hese reactive routes s ∈ S broken are constructed as described

n Section 3.4.2 and no more route structure optimisation is

rocessed. 

LH 1 . i -cross exchange. For any two scheduled routes r 1 and r 2 ,

pply i -cross exchange. If any resulting route visits one point more

han once, the points adjacent to longer edges are removed. Moves

re examined for each pair of routes in a nested loop, the first

ielding an improvement being implemented. (1 ≤ i ≤ 5). 

LH 2 . i -worst point insertion (5 ≤ i ≤ 20). This LLH improves the

ext w days’ scheduled routes by finding the i highest risk points

ot appearing in the current schedule solution x . These i points are

hen inserted into the w days schedule using a cheapest insertion

euristic with a relaxed time limit. If any target route in w now ex-

eeds the T max limitation, we repeatedly remove the best-condition

oint from that route until it becomes feasible. 

The two LLHs above keep a copy of the original routes and gen-

rate new routes through operations. New routes are stored in the

e-optimised routes set S reopt . Though these modified routes may

ot generate improvements for the current iteration or the cur-

ent short planning horizon, they normally contain relatively high

isk cluster-points in recent time. Hence, they are still likely to be

icked up using schedule related moves later or contribute to the

ear-future plan. 

� Schedule related moves: 

LH 3 . n -replace schedule ( 1 ≤ n ≤ w ). Replace the last n days’

chedule with n other routes from the candidate set S all , that are

ot included in the current solution, and whose tabu tenures l s 
ventative and corrective maintenance schedules for a large scale 
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equals zero and has not been tested during the search ( u s = false ).

We sort the candidate set S all to check the higher risk routes

first as these moves are more likely to produce improvements.

Algorithm 3.3 presents the pseudo code of LLH 3 . 

Algorithm 3.3 n -replace heuristic. 

S all is a list of candidates routes sorted by risk in descending

order 

for each day i in the last n days’ schedule do 

for each route s in S all where u s = false && l s = 0 && s / ∈ x do 

x ′ = replace the route scheduled in day i with s ; 

if x ′ . v alue < x. v alue then 

x = x ′ 
u s = true 

break 

end if 

end for 

end for 

return x 

LLH 4 . n -replace schedule random ( 1 ≤ n ≤ w − 1 ). Same as LLH 3 ,

except that we choose the n day’s schedule to replace randomly,

instead of the last n day’s schedule. 

LLH 5 . switch two days’ schedule (see Algorithm 3.4 ). First im-

provement scheme is applied. 

Algorithm 3.4 switch heuristic. 

for i = 0 ; i < x.length ; i = i + 1 do 

for j = i + 1 ; j < x.length ; j = j + 1 do 

x ′ = switch the i th and jth days’ schedule; 

if x ′ . v alue < x. v alue then 

return x ′ 
end if 

end for 

end for 

return x 

LLH 6 . Pop up ( Algorithm 3.5 ). Pop up i th day’s schedule to a target

position j . For example, one neighbour of solution 1,2,3,4 can be

1,4,2,3 by popping up 4 to the second position. In Algorithm 3.5 ,

entry = w and stop = 1 are used in following experiments. 

Algorithm 3.5 Pop up (entry, stop). 

Define : entry : the route to pop up 

stop: the target day; 

for i = entry ; i > stop; i = i − 1 do 

for j = i − 1 ; j ≥ stop; j = j − 1 do 

x ′ = pop up i th day’s schedule to jth day; 

if x ′ . v alue < x. v alue then 

return x ′ 
end if 

end for 

end for 

return x 

In summary, if we need to produce a w = 7 days schedule, in

total 36 LLHs will be called. The LLHs set contains both route struc-

ture adaptation and schedule modification according to risk esti-

mation. Our preliminary experiments show that all the LLHs con-

tribute to the final solution quality. Among them, LLH 2 makes the

most improvements. Also, LLH helps the solver continuously add
2 

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
ew elements to the candidate routes set. Our LLHs do not allow

ny individual route to visit one point more than once. However

here is no rule to eliminate a solution that contains a cluster-point

ore than once during the period w : our experiments suggest that

uch a sub-optimal solution is easy for the algorithm to improve

sing LLH 2 , LLH 3 , LLH 4 , which is thus rarely seen in practice. If a

esulting solution suggests to visit a point more than once within

 days, the heuristic is opportunistically visiting a recently cleaned

ully that lies close to the current route. 

.5.3. Improve current solution by partial rebuilding 

Given a current solution x returned from the BEBO improve-

ent stage, we reinitialise x by partly destroying and rebuilding

 . Then the BEBO improvement and reinitialisation repeats for a

iven CPU time. The global best solution is remembered. 

Destroy: For a w days schedule solution, we randomly remove

 days of the schedule, where y ≤ w/ 2 ; 

Rebuild: Here, we build y new routes that can replace the

 removed schedules. First, from the optimised routes informa-

ion stored in the fixed memory, we know the average number

f points n̄ included in a route. We then select n worst number of

oints with the highest risk under current environment and n random 

andom points that have not been visited in the w − y unchanged

cheduled routes, where n random 

= n worst = n̄ ∗ y/ 2 . Next, the entire

rocess in Section 3.4.1 is applied to the selected points, result-

ng in z distance-optimised routes, which are stored in the re-

ptimised routes set S reopt . Finally, y out of the z routes are ran-

omly assigned to replace the removed schedules. 

. Experiment 

In this section, we summarise the background of our problem

nd simulation. Then, we determine the rolling planning horizon

y experimenting with its effect on risk management under differ-

nt environmental conditions. Finally, we consider how different

aintenance policies affect the surface water flooding risk due to

locked gully pots in the long term. All simulations were imple-

ented in C# and executed on a cluster composed of 8 Windows

omputers with 8 cores, Intel Xeon E3-1230 CPU and 16 Gigabyte

AM. 

.1. Data & parameters 

.1.1. Simulation settings 

Gully pot information comprises location, surrounding proper-

ies, nearby trees and historical maintenance actions from Black-

ool local council, a client of Gaist Solutions Ltd. 

1. Total number of gully pots in the system: 28,149. 

2. Broken events: according to the records, on average about 1.8

percent of gully pots are broken every year. In our simulation,

this is represented by each gully pot becoming broken ran-

domly with probability 0.0 0 0 05 per day. 

3. Accessibility: on average, the records show that about 8.3 per-

cent of gully pots are not serviced during maintenance each

year. In a normal cleaning day, the maintenance team is able to

visit about 80 gully pots. In the simulation, we assume that the

probability of a gully pot being inaccessible during preventative

maintenance is 0.068. For corrective actions, including servicing

both calls and broken gully pots, we assume the team always

has access to the gully pot. 

4. Blocking probability: a gully pot lifetime is estimated by a

Weibull distribution described in Section 3.2.2 . Every day, each

gully pot has a probability of becoming blocked according to

its failure rate function h i (d) = 

R i (d−1) −R i (d) 

R i (d−1) 
, where R i (d) = 1 −

F (d) is the reliability function. 
i 

ventative and corrective maintenance schedules for a large scale 
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Fig. 7. Percentage of calling evens and blockages recorded in different seasons, for 

the gully-pot system in Blackpool. 
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Fig. 8. Effects of limiting computation time for different planning horizons. 
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5. Seasonal factors F : the Blackpool data only allows us to include

trees and leaf-fall in our simulation. Seasonal factors related to

the number of trees nearby highly affect the lifetime of gully

pots, and on average, each gully pot is affected by 0.4 trees in

Blackpool. 

6. Calls: about 1700 calls are received every year by the Black-

pool gully maintenance team, and most of the calls concern

blocked or damaged gully pots. Over 50 percent of all calls

occur during the autumn, as shown in Fig. 7 . Our statisti-

cal analysis determined that, to match the resident calling

behaviour in our simulation, the probability of receiving a

call if a gully pot is already broken or blocked is p cal l s (i ) =
{ 0 . 0 033 , 0 . 0 05 , 0 . 0 056 , 0 . 0 02 } for spring through winter, re-

spectively. If a gully pot is not broken, there is still a small

chance that a call is received, related to its current condi-

tion. The simulation probability is p cal l s (i ) = P i (d) ∗ γ , where

γ = 10 . 62 has been measured experimentally to adjust the call-

ing probability to match the real data. 

7. Other issues: as well as broken gullies reported by residents,

damage is also found during preventative maintenance. In this

case, the simulation registers the broken gully and schedules it

on a later day. 

These parameters have been discussed with Gaist Solutions Ltd.

nd agreed to be a realistic representation of gully-pot behaviour

n Blackpool. 

.1.2. Search parameters setting 

The BEBO heuristic described in Section 3.5.2 is parameter-free,

ince all LLHs are given and it always chooses the best LLH at each

ecision point. 

The termination criterion of the entire search process composed

y BEBO and reinitialisation is controlled by a pre-set CPU time.

any heuristic search strategies find good solutions in the very

arly stages, but to find more improvements becomes harder and

arder. To avoid either too early termination or unnecessary CPU

onsumption, we test the effects of limited computation time for

arious sizes of planning horizon, w . According to our experiments,

bout 0.002, 15, 68, 319 and 1189 minutes are required respectively

or planning horizons w = { 1 , 5 , 7 , 10 , 14 } to achieve results that

re within 2 percent of the best found solutions in preliminary ex-

eriments run over 48 hours of CPU times (see Fig. 8 ). These CPU

ime limitations are used in the subsequent experiments. 
able 2 

nvironment settings. 

State Definition 

Stable Based on the real-world situation, running simulation of maintena

system risk becomes stable; used as the initial state for all stable s

Recovery Start with very poor gully-pot conditions, and entire system in a h

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
In the long term rolling planning process, we save the newest

enerated routes in a re-optimised routes set S reopt of size m . Large

alues of m result in a more diverse set of routes, which may lead

o a better solution. However, if m is too large, the increased CPU

ime (for schedule-related LLHs ( Section 3.5.2 ) to find their local

ptima) does not yield better solutions in the time available. The

oute diversity due to larger m contains too many old updates dur-

ng the search, which increases the searching complexity. If m is

oo small, route-related moves repeatedly generate the same or

ery similar routes. For our case, m = 25 percent of the initial fixed

outes set size (see Fig. 4 ) is found to give the best balance be-

ween these two effects in preliminary experiments. 

.2. Impact of planning horizon w on risk management in different 

nvironments 

Gully pot lifetimes are affected by seasonal factors. In addi-

ion, peoples’ reporting behaviour is different at different times of

ear. A short planning horizon may result in many reactive actions,

nd require more frequent information updates, whereas a longer

lanning horizon is better at balancing preventative and correc-

ive maintenance. However, when w is too large, it leads to a plan

ased on insufficiently up-to-date information. 

This section explores the impact of the planning horizon w

n the maintenance performance in four seasons with the gully-

ot system in either stable or recovering states. As shown in

able 2 , a stable state assumes that the entire system is well main-

ained and the number of days since last maintenance action of

ach gully is uniformly distributed across 1.5 years. The recover-

ng state assumes that the system has had bad maintenance and

he number of days since the last maintenance action for each

ully is uniformly distributed within 3 years. For each scenario,

 = { 1 , 5 , 7 , 10 } is tested. 

Fig. 9 shows the average daily surface water flooding risk

aused by clogged gullies in Blackpool by using different planning

orizons under different scenarios. We can be relatively sure that

here is a genuine difference in risk, when both the mean values

nd the 95 percent confidence intervals differ. In the stable sce-

arios ( Fig. 9 (a)), w = 5 and w = 7 perform better than other set-
Years since 

last maintenance 

nce actions for a long period until the overall 

cenarios 

0 to 1.5 

igh risk state 0 to 3 

ventative and corrective maintenance schedules for a large scale 
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Fig. 9. Impact from planing horizon to maintenance performance in different envi- 

ronments. Error bars show 95 percent confidence interval on each mean. 
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tings during spring and summer. Over autumn and winter, when

the number of blocked gully pots and calls significantly increases,

w = 1 produces the best schedules, as it updates system and envi-

ronment information most frequently. w = 10 performs badly in all

seasons, due to lack of up-to-date information. 

In the recovery scenarios ( Fig. 9 (b)), the overall risk is about 2

to 3 times greater than when the system is in the corresponding

stable state. In particular, if there is a lack of maintenance in au-

tumn, this may lead to serious consequences. Again, w = 1 always

produces the best schedules in the recovery state. This is because

there is a significant number of emerging situations every day. Up-

dating the system and environment information every day brings

considerable advantages. In the recovery scenario, it is difficult to

identify a single best value among w = { 5 , 7 , 10 } ; it is hard to bal-

ance the preventative and reactive actions by adjusting planning

horizons in relatively dynamic situations. 

Table 3 presents scheduling performance in terms of corrective

actions. As we described in Section 3 , our solution does not impose
Table 3 

The effect of planning horizon on corrective maintenance performance. Emergings per da

Spring Summer 

Average Emergings Average Emergings 

response per day response per day 

1 1 .56 0 .53 1 .68 0 .64 

5 3 .82 0 .67 3 .97 0 .33 

7 4 .58 0 .57 4 .28 0 .51 

10 5 .98 0 .63 6 .23 0 .43 

1 14 .74 25 .02 14 .22 24 .27 

5 18 .26 24 .73 18 .82 23 .22 

7 20 .07 23 .41 22 .46 23 .01 

10 17 .63 23 .26 19 .86 23 .07 

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
ard constraints on the time taken to respond to residents’ calls.

nstead, the hyper-heuristics automatically choose maintenance ac-

ions that minimise the entire system’s risk. On average, in a stable

tate all tested planning horizons react to emerging events in less

han 7 days. In the recovery state, w = 1 gives the fastest reaction

o these emerging problem gully pots. However, even with w = 1

here are big challenges in the autumn period, when the average

elay between identification and correction of a problematic gully

ot is 34 days. 

.3. Effect of maintenance policies on risk in continuous time 

Our essential aim is to reduce the surface water flooding risk

or the entire city in continuous time. In the previous section, we

eek the best-performing rolling planning horizon. w = 1 requires

he shortest computation time and produces the best schedule

hen the system is under pressure, but collecting the system and

nvironment information every day is not feasible in real-world

eam management. When the gully-pot system is in its stable state,

 = 7 shows the best ability to cope with seasonal changes. After

onsultation with Gaist Solutions Ltd, w = 7 is applied in the long

eriod maintenance policy testing, since this balances team man-

gement requirements and scheduling performance. 

In order to test the impact of how we manage preventative and

orrective maintenance, we designed six policies that combine pre-

entative and corrective actions with different rules. In these ex-

eriments, all scheduled routes are optimised on distance. 

• Policy0: Pure reactive policy. Every week, we produce a w = 7

days schedule for reported problematic gully pots only, accord-

ing to up-to-date information. Priority is given to the emerging

events with highest risk. After finishing these planned tasks, we

take a rest until the plan for the next week is produced. 
• Policy01: Pure reactive policy. Every day, we produce a w = 7

days schedule for reported problematic gully pots only, accord-

ing to up-to-date information. Only the first day schedule is ex-

ecuted, then we replan for the following week. 
• Policy1: Pure reactive policy 0 in autumn, predictive schedule

(see Section 3 ) with planning horizon w = 7 in other seasons. 
• Policy2: Predictive schedule, introduced in Section 3 , for all sea-

sons. 
• Policy3: Fixed manual schedule. All preventative routes are gen-

erated at the beginning of a year, giving the routes stored in

fixed memory, see Fig. 4 . These routes are arranged in descend-

ing order of risk measured at the initial time. Every week, we

use the first two days to deal with emerging events and use the

remaining 5 days to deploy preventative actions, in order. Dur-

ing corrective time, we give priority to routes with the highest

risk, �i ∈ s r i P i ( today ). 
y: the average number of identified problematic gully pots. 

Autumn Winter 

Average Emergings Average Emergings 

response per day response per day 

Stable 

2 .55 5 .18 3 .00 2 .54 

3 .88 4 .85 4 .24 2 .37 

4 .36 4 .87 4 .97 2 .51 

4 .58 4 .80 3 .71 2 .32 

Recover 

34 .41 65 .22 16 .59 28 .29 

36 .80 64 .52 25 .04 29 .33 

36 .40 65 .06 22 .15 28 .38 

36 .12 63 .44 19 .32 27 .69 

ventative and corrective maintenance schedules for a large scale 
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Fig. 10. Policy performance in stable state. Error bars show one standard deviation 

of daily risks for each season. 
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• Policy4: Dynamic manual schedule. Similar to policy 3, but pri-

ority is given to corrective maintenance. We firstly serve all

known problematic gully pots. If there are still some days left

in this week, we carry out the pre-ordered preventative main-

tenance routes. This policy is widely used in real-world gully

pot maintenance programmes. 

We evaluate the performance of each policy from three aspects:

verall risk management, agility to emerging events, and running

ost. These six policies are firstly tested in a stable state and then

e test their recovery speeds in a variety of bad initial situations.

he daily risk is evaluated from the actual blocked and broken

ully pots with their associated risk impact. 

.3.1. Performance in the stable state 

We run each policy on the Blackpool gully-pot system over four

ears, with corresponding seasonal settings and residents’ report-

ng behaviour. Five random runs are carried out for each policy. We

valuate the average daily risk based on these experiments. 

isk management. Fig. 10 shows the average daily risk when ap-

lying the different maintenance policies in a stable state. Pure re-

ctive policy 0 produces the highest risk all the time, and is about

hree times worse than any preventative and corrective combined

olicy. Even if we reschedule every day (policy 01), pure reactive

aintenance still preforms significantly worse than other policies.

he performance of pure reactive policies in autumn is not signif-

cantly worse than their performance in other seasons. However,

heir data shows very big deviations in autumn, which suggests

arge fluctuations happen. In the daily performance tracking, we

nd serious risk increases at the beginning of autumn, due to the

ack of maintenance in other seasons and environmental factors.

lso, in autumn, residents’ reporting behaviour helps to prompt a

arge number of reactive actions. 

From policy 1 to 4, the predictive scheduling strategy (policy 2)

chieves the best overall performance. It is significantly better than

anual scheduling in summer, autumn and winter. In spring, there

s not much difference in applying any of the preventative plus cor-

ective policies. To track the daily risk change over time, we apply

hese four policies in exactly the same environment simulation for

our years. As illustrated in Fig. 11 , policy 4 is used as a base line

nd the other three policies are compared against it. When apply-

ng policy 4 in a stable state, the estimated cost due to surface

ooding risk is £18,082 on average per day. By just rearranging the

reventative and corrective tasks, policy 3 achieves an average risk

ecrease of about 12 percent per day, but always giving priority to

merging events may lead to poor working efficiency. The best re-

ult is for policy 2, which produces schedules that out perform the

ase line (policy 4) in 91 percent of days over 4 years; on average,

olicy 2 decreases risk by about 17 percent per day. 
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
gility. Table 4 presents the average number of days to respond to

alls. All policies except policy 3 are able to react to emerging calls

n less than 5 days on average. Policy 3 uses a very straightfor-

ard scheduling rule, which may be good for team management,

ut shows serious latency for emerging requests. When only ap-

lying reactive actions (policy 0 and 01), on average about 3 times

ore residents’ calls are received per day. This also exposes one

eason for the poor performance of these policies in risk manage-

ent ( Fig. 10 ): lack of preventative maintenance leads to more cor-

ective maintenance. 

orking efficiency analysis. To discover how the predictive sched-

le strategy (policy 2) out performs other policies, we focus on

ime usage and work efficiency. Fig. 12 illustrates the percentage

f time spent in different types of activity. First, we can see that

he reactive policy 0 shows high dependence on resident reports,

esulting in working time of only about 45 percent during spring,

ummer and winter. Policy 3 follows a very straightforward rule, to

o maintenance throughout the year. The fixed rule lacks the abil-

ty to adapt to seasonal changes. As Fig. 10 shows, policy 3 has the

argest fluctuations in all seasons compared to other preventative

nd corrective combined policies. 

The time usage distributions of policy 2 and the manual sched-

le policy 4 show very similar patterns in Fig. 12 . Table 5 com-

ares the daily working efficiency of policy 2 and 4. On average,

olicy 2 manages to service 10 more gully pots every day within

he same working time constraints. One reason is because policy 2

reats the resident calls and normal preventative maintenance to-

ether, so more efficient routes can be found and emerging block-

ges can be solved at the same time. Comparing to the fixed pre-

entative routes managed by policy 4, policy 2 always attempts to

nsert more high risk gully pots into the current scheduled routes

 Section 3.5.2 LLH 2), which results in automatically rescheduling

f any missed gullies from previous preventative maintenance.

ig. 13 illustrates further evidence that policy 2 produces better

chedules. Comparing Fig. 1 (the gully pot risk impact map of

lackpool) and Fig. 13 (the service frequency map under policies

 & 4), we find policy 2 successfully targets the geographical ar-

as which have been evaluated as highest risk. In contrast, policy

 schedules the service times more evenly, which results in too

any visits to low criticality areas. 

ost. using Blackpool’s current operational costs ( Table 6 ), we can

stimate the annual cost of each maintenance policy. This allows

s to explore the cost of extra effort required for preventative

aintenance. 

The cost estimates for the different policies is shown in Fig. 14 .

ll of the preventative and corrective combined policies show ex-

enditure of £280,0 0 0 to £30 0,0 0 0 annually. This means that, com-

ared to the pure reactive policy 0, an extra 10 percent of expen-

iture could reduce potential risk by as much as a factor of 3, over

ime ( Fig. 10 ). 

Comparing the predictive policy 2 to the current manual pol-

cy 4, about £80 0 0 more would need to be spent each year, due

o the additional preventative work. However, these extra preven-

ative actions would result in about £30 0 0 of risk reduction every

ay, or over £1 million per year. 

Due to data limitations, our current simulation of gully pot

reakage behaviour uses a fixed probability, giving roughly 500

roken gully pots a year, generated at random times. This simplis-

ic breakage regime, which is the same under each policy, results

n all policies presenting similar effort to tackle broken gully pots.

n practice, policies with regular preventative maintenance would

low deterioration, and might decrease the chance of breakage. We

ould expect a more realistic model of breakage probability to
ventative and corrective maintenance schedules for a large scale 
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Fig. 11. Daily risk change over 4 years in a stable state using 4 types of preventative plus corrective maintenance policy. 

Table 4 

Agility analysis of different maintenance policies. 

Average response Emergings per day 

Policy 0 4 .88 11 .14 

Policy 01 2 .24 10 .88 

Policy 1 3 .93 4 .31 

Policy 2 4 .34 3 .30 

Policy 3 20 .82 2 .83 

Policy 4 4 .67 3 .19 
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reduce the apparent cost of policies 1 to 4 to less than the cost

of policies 0 and 01. 

In conclusion, preventative maintenance could significantly

ameliorate the surface water flooding risk caused by blocked gully

pots at reasonable additional cost; these costs are more than justi-

fied by service quality improvement. 

4.3.2. Performance in recovery state 

Here, we test the robustness of each policy by starting from a

very bad initial condition. We explore how long it takes for each

maintenance policy to take the system from a poor initial state to

a stable state. The average risk of applying each policy in a stable

state ( Section 4.3.1 ) is used as the policy’s base line. As presented

in Table 7 , four scenarios are tested. We use two parameters, “since
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
ast maintenance action θ ′ and “percentage of broken gully pots”

o control the system’s initial state. For each scenario settings, we

eport the average of 10 runs of a two-year simulation. 

ecovery speed. From Fig. 15 , we can see that the initial situa-

ion in scenario 2 is very close to the stable state of reactive pol-

cy 0. Comparing scenario 1 to scenario 2, the overall shortage of

reventative maintenance is more difficult to recover from than a

mall amount of very broken gully pots in the system. On aver-

ge, policies 1 to 4 need about 7 months to restore the system

o its stable state in scenario 2 (see Fig. 15 (b)), whilst they need

bout 19 months to recover from initial situation in scenario 1 (see

ig. 15 (a)). Comparing policies 1 to 4 in scenario 1 and 3, we can

ee that policies 1 and 2 perform better than both of the man-

al policies 3 and 4 in terms of percentage risk increase. The ro-

ustness of both manual policies is considerably worse than that

f policies 1 and 2, especially during the autumn period in the

rst year. Comparing the performance of policies 3 and 4, the fixed

chedule strategy (policy 3) is a lot worse than the more flexible

trategy (policy 4). 

ctivity changes during recovery stage. To recover from different

ituations, policies 1 to 4 utilise their time in different ways.

ig. 16 presents the time usage of each policy during the first year

f the recovery stage. Policy 3 has fixed amount of preventative
ventative and corrective maintenance schedules for a large scale 
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Fig. 12. How different policies use their time to do maintenance. 

Table 5 

Average number of gully pots serviced per day by policy 2 and 4. 

Spring Summer Autumn Winter 

Policy2 81 .90 82 .09 83 .41 81 .42 

Policy4 71 .03 71 .45 74 .60 72 .28 

Table 6 

Operation costs of gully-pot maintenance. 

Cost Unit 

Travelling £0.28 per km 

Vehicle maintenance £20,0 0 0 per year 

Human resource £56,0 0 0 per year 

Preventative £3.25 per gully 

Calls response £19.00 per gully 

Broken £225.00 per gully 

t  

a  

d  

Fig. 14. Annual operation cost and surface water flooding risk caused by clogged 

gully pots for the different policies. 

g  

t  

a  
ime, about 71 percent, through all scenarios. However, it still

djusts the remaining 29 percent of corrective action time to face

ifferent types of emerging events (including calls and broken
Fig. 13. Geographic distribution of servic

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
ully pots). Comparing policies 3 and 4 in scenario 1, 3 and 4,

he relatively more flexible policy 4 almost stops its preventative

ctions except in winter. This flexibility helps policy 4 to recover
e frequency in 4 years simulation. 

ventative and corrective maintenance schedules for a large scale 
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Table 7 

Initial conditions for different recovery scenarios. Two parameters, “since last main- 

tenance action” and “percentage of broken gully pots” set the system’s initial state: 

for all gully pots, the days since their last service are evenly distributed in θ years. 

We randomly assign x percent of gully pots to be in the broken state. 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Since last maintenance θ 3 years 1.5 years 3 years 4 years 

Initial broken gully 

pots(percent) 

0.7 2 2 3 
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the system faster in the early stage and results in less total damage

during the recovery stage. Interestingly, both policies 3 and 4 take

similar amounts of total time to recover the entire system in all

scenarios: the rate of recovery for policy 4 slows over time. The

predictive policy 2 balances its preventative and corrective time,

and is between policies 3 and 4. The balanced strategy results in a

steady recovery process; even though it only does corrective work

during autumn period (like policy 1) and has some resting days,

the overall performance is not affected. 

4.4. What-if questions 

All the experiments introduced in the previous sections are

based on the real-world scenarios. In this section, we test three

hypotheses, which uncover potential weaknesses of our schedul-

ing approach, and suggest future investment directions to improve

maintenance performance. Experiments use policy 2 plus the cur-

rent manual approach, policy 4. 
Fig. 15. Recovery speed using different policies. The percentage of risk is calculated as (r

average daily risk of applying the corresponding policy in its stable state (see Section 4.3

Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
.4.1. What if we do not have information on risk impact? 

Section 3.2.1 describes the method to collect and estimate each

ully pot’s risk impact, which estimates the consequences of sur-

ace water flooding due to clogged gully pots. However, not every

ocal council records the information. Fig. 17 compares the perfor-

ance of policies 2 and 4 with the same policies operating when

here is no risk impact information, labelled policy 2 ∗ and policy

 

∗. Policy 2 ∗ results in a much higher risk than policy 2 ( Fig. 13 (a));

n fact, the lack of risk impact data means that policy 2 becomes

imilar to policy 4: all gully pots are serviced evenly. For the same

eason, missing risk impact information (policy 4 ∗) has a minimal

ffect on performance compared to policy 4. 

.4.2. What if all gullies are accessible – the impact of parking 

ssues? 

In Section 4.1.1 , the simulation has about 8.3 percent of gully

ots inaccessible, modelling the effect of parking. This decreases

he maintenance working efficiency. Potential strategies can be

roposed such as banning parking when a maintenance visit is

cheduled, but this increases management complexity and resi-

ents’ complaints. Here, we explore the impact that inaccessible

ully pots has, by comparing results for policies 2 and 4 with re-

ults for simulations with zero inaccessible gully pots (policy2 ∗∗

nd policy4 ∗∗). From Fig. 17 , for the current manual schedule strat-

gy (policy 4), there is about a 13 percent risk decrease if all gully

ots are accessible. However, there is no difference between policy

 and policy 2 ∗∗. Policy 2 is more able to cope with the current

arking issues, because it flexibly re-schedules preventative main-

enance of inaccessible gully pots. 
 −˜ r ) / ̃ r ∗ 100 percent , where r represents the daily surface flooding risk and ̃  r is the 

.1 ). 

ventative and corrective maintenance schedules for a large scale 
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Fig. 16. How different policies use their time in recovery from very bad initial conditions. 

Fig. 17. The average risk of applying policy 2 and 4 in stable state with 4 assump- 

tions. Error bars show 95 percent confidence intervals on each mean. Policy 2 and 

policy 4 are running in the real-world scenario; policy2 ∗ and policy4 ∗ assume we 

do not have risk impact information; policy2 ∗∗ and policy4 ∗∗ assume there are no 

parking issues during preventative maintenance; policy2 ∗∗∗ and policy4 ∗∗∗ assume 

we can know any problematic gully pot immediately. 

Fig. 18. Time usage of policy2 ∗∗∗ and policy4 ∗∗∗ . 
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.4.3. What if we could do condition-based maintenance (CBM)? 

Improving low-cost sensor techniques make it potentially fea-

ible to continuously monitor gully-pot condition. This would al-

ow our schedule strategies to be combined with CBM, discussed in

ection 2.1 . Currently, we only find out that a gully pot is blocked

r broken if it is found during preventative maintenance or re-

orted; because of this incomplete system information, it is dif-

cult to produce truly optimal schedules. To demonstrate the im-

ortance of timely blockage or breakage information, we simulate

 scenario in which all problematic gully pots are known imme-

iately. From the results in Fig. 17 , both of the policies achieve

ramatic risk decreases: policy 2 ∗∗∗ and policy 4 ∗∗∗ reduce risk on

verage by about 95 percent and 91 percent, respectively. Further-

ore, we see that these optimal information policies do not re-

uire more time to be spent on corrective actions: rather, break-

ges are addressed in a more timely manner. Fig. 18 shows the
Please cite this article as: Y. Chen et al., Dynamic optimisation of pre

urban drainage system, European Journal of Operational Research (2016
ery similar time usage of policy 2 ∗∗∗ and policy 4 ∗∗∗ compared to

olicy 2 and policy 4 (see Fig. 12 ). 

. Conclusion 

This paper has considered a real-world large-scale

eographically-distributed maintenance problem. It originates 

rom the problem of gully-pot maintenance in the city of Black-

ool, UK. The general aim is to reduce the overall surface water

ooding risk caused by clogged gully pots in continuous time. The

roblem is modelled as a periodic travelling salesman problem

PTSP) and we propose a short period rolling planning approach

hat is able to automate adaptation to any environment changes.

nlike the standard PTSP, the main objective in our model is to

inimise the risk measured by risk impact and failure rate of gully

ots during a planning horizon. At the same time, all scheduled

outes should be minimised in distance. 

Due to the dynamic and large-scale features of our problem,

e introduce a data structure (see Fig. 4 ) for dealing with differ-

nt types of actions. In addition, our objective function is highly

ensitive to the gully pots’ changing failure rates. We presented a

yper-heuristic framework embedded with a group of route and

chedule-related low-level moves. This structure allows dynamic

alancing between route and schedule optimisation. 

By adjusting different types of actions in different scenar-

os, our predictive scheduling strategy successfully out-performs

he current real-world gully-pot maintenance approach, which is

idely used in the UK, in terms of overall risk management,

gility to react to emerging events, and robustness to poor initial

tates. 

This predictive strategy relies significantly on the understanding

f asset failure behaviour. Our estimation is based on working with

xperts in the field to provide the best (limited) data available. We

re also working with Gaist Ltd. on a new surveying methodology

hich will further improve data in the future, but such data will

ot be available for some time to come. 

We also estimate the potential investment to improve the main-

enance performance. Results show the major reason for the cur-

ent maintenance’ poor performance is the latency of gully pot sta-

us information. Any technique that could accurately monitor the

ystem status might afford an average 91 percent risk decreases

very day, which would be worth an estimated £16,0 0 0 per day in

lackpool alone. 
ventative and corrective maintenance schedules for a large scale 
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In further work we will investigate other investment possibili-

ties. It is worth noting that work that Gaist Solution Ltd. has done

to date on road maintenance decision support has resulted in in-

vestment worth hundreds of millions of pounds across several UK

local councils. 
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